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w0l Maintaining a strong deterrent looks
vastly different through the years
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w0l Maintaining a strong deterrent looks
vastly different through the years
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A cylindrical conduit that supports—and ensures
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HPC allows for predictive modeling of nuclear data
and realistic estimation of modelling uncertainties

The nuclear theory
loop of frustration

My model does not
match my data (to within
an acceptable degree)

More compute
power is needed
to include said
physics

L

| need to include more
physics in my model

Lawrence Livermore
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HPC allows for predictive modeling of nuclear data
and realistic estimation of modelling uncertainties

The covariance loop
of frustration

My model does not
match my data (to
within an acceptable
degree)

More compute
power is needed
to geteven a
rough estimate

f tainti
or uncertainties Maybe it would if | knew

how precise itis

Lawrence Livermore 8
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...

Removing all assumptions in nuclear data models results
In accurate evaluations at a high computational cost
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Physics of Hadrons

Physics of Nuclei

Removing all assumptions in nuclear data models results
In accurate evaluations at a high computational cost

Degrees of Freedom Energy (MeV)

pion mass

proton separation
energy in lead

vibrational
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National Laboratory

10



Physics of Hadrons

Physics of Nuclei

Removing all assumptions in nuclear data models results
In accurate evaluations at a high computational cost

Degrees of Freedom Energy (MeV)
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...

Removing all assumptions in nuclear data models results
In accurate evaluations at a high computational cost

Predicting polarized DT fusion.

Degrees of Freedom Energy (MeV)
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Physics of Hadrons

Physics of Nuclei

Removing all assumptions in nuclear data models results
In accurate evaluations at a high computational cost

Degrees of Freedom

constituent quarks

protons, neutrons

nucleonic densities
and currents

—

collective coordinates
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National Laboratory

Energy (MeV)

940

neutron mass

8

proton separation
energy in lead

1.32

vibrational
state in tin

0.043

rotational
state in uranium

Predicting polarized DT fusion.
From scratch!
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.100.034610

Calculation adjusted to reproduce reaction cross section
yields improved predictions for angular distributions

Lawrence Livermore
National Laboratory

5Li(n,t)*He Reaction Cross Section

Angular Distribution

4.0 . ]
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= evaluation iy - o
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Cost: ~2years of development, demonstrating &
implementing new algorithms, some light ML, a

significant amount of compute time.
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Calculation adjusted to reproduce reaction cross section
yields improved predictions for angular distributions

>
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6Li(n,t)*He

Ab initio inf

evaluation\

ular Distribution

E,=0.183 MeV

Ab initio
informed
evaluation

DF/
i

50 100 150
Angle (degrees)

Cost: ~2years of development, demonstrating &
implementing new algorithms, some light ML, a
significant amount of compute time.
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Physics of Hadrons

Physics of Nuclei

Many applications require properties of thousands of

different nuclei

Degrees of Freedom

baryons, mesons

protons, neutrons

collective coordinates

Energy (MeV)

940

neutron mass

140

pion mass

8

proton separation
energy in lead

1.32
vibrational
state in tin

0.043

rotational
state in uranium

Density functional theory is a quantum-
mechanical theory of atomic nuclei that scale
across the entire chart of isotopes

Proton number

DFT provides a consistent framework for

calculations of Q values, decays, fission based 20

on a single set of parameters

DFT mass
table

Limits of B-decay
existence rates

measured
observed FRIB

------ (3-stability

J J
Nature 486, 509 PRC 102, 034326

82 126 184
Neutron number

Probability
of existence

J

PRC 101, 044307

HPC has introduced a paradigm shift in less than 15 years
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With HPC, DFT has a shot at cracking fission (really...)

Spin distributions and average
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Peta- and exascale computers made such simulations possible




...

Uncertainty quantification and propagation cannot
happen without HPC systems

Port Generate real data Propagate theoretical
computationally- from models running Train emulators with uncertainties to
expensive kernels to on GPU-enabled HPC Al/ML models prediction of

GPU systems observables

10! =

Speedup

Deformation Energy [MeV]

— UNEDF1
.| 15 ---- UNEDF1cpt
| U TR RS RS R S | o | 4 I 71 90% confidence
X S M L o X5k 0 S0 100 150 200 250 300 350 400 , , . . ! ! L
Model Space size Axial quadrupole moment q [b] Rescalo vith GaSP  Random Forest  Gaussian Process  Dice Kriging 50 100 150

Quadrupole moment Q,, (b)

Generating quality data to build reliable and efficient emulators is where HPC is needed




With great power comes a great utilities bill. Machines
become more efficient by shifting architectures.
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Going beyond general-purpose GPUs: hardware
specialized for machine learning.

World’s Largest computer chip SambaNova Systems DataScale™

Great if your problem is training a neural network. Not so great if your problem cannot be mapped to it.



What is the next step for HPC when it comes to
modeling quantum systems?

¥

blem-specific hardware

The age of iCiniS OVer. The tlme of u.c?mhas come.

21



The next (on-board?) accelerators in HPC are
going to be QPUs

bit qubit
' WS Tow /
R )]
- LN W
Microwave
control pulse
Either 0 or 1 [Wqupie) = al0) +B11)

E Lawrence Livermore 23
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Pulse-level control of hardware allows constructing
operations that will be specific to the problem solution.
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With custom gates, designed noise-resilient algorithm
for qgquantum simulation of multi-nucleon spin dynamics

~_Simulated QPU
00304 (custom gates)

0.025 -
Simulated QPU
2 0.020 A
= (standard)
S . 0.015 -
o
x

0.010 - = 6 qubits

0.005 -

Polynomial scaling
with number of particles

0.000 1_,

Time (Mev™)
Wendt KA et al, in prep
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Gate-based QC still useful despite decoherence,
significantly lowers barrier to entry

¢ Raw results Exact (8 momenta)

. ?  Error mitigated results ~ ------ Exact (32 momenta)
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What’s the lesson, what is the take-away?

Near-future advanced computing architectures:

Theory model outputs for ML training.

Increased precision and predictive capabilities for nuclear models/Microscopic inputs for phenomenological ones
Improved uncertainty estimates for theory & models.

Uncertainty propagation from evaluation to users

Leveraging HPC in nuclear experiments for quick turnaround & better/more data

ok~

What is stopping us?

1. High barrier to entry/Current resources not nuclear-specific-—Iraining
2. May need to fundamentally rethink how problems are solved—TIraining
3. Coding language support varies for different platforms—Software

4. Codesrequire fine-tuning for specific platforms—Software

Maybe-not-so-near-future advanced computing architectures:
1. Hardware tuned to the solution of a given type of problem
2. Previously-impossible calculations & modeling approaches in sight

Lawrence Livermore

National Laboratory 27



