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Outline

¢ White-Source (n,2n) and (n,3n) Measurements Capabilities
with CLYC-7 n-n Coincidences

e The DAPPER array

e GENESIS Forward Analysis at the LBNL 88-inch
Spectrometer

e Exotic fission measurements with the FRIB High-Rigidity
Spectrometer

® Microcalorimeters for Nuclear Data Measurements
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Fusion Reactors Rely on (n,2n) and (n,3n) RXns
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Traditionally: ~v-rays, Activation, or n Counting
Calculated with CoHs - T. Kawano, Springer Proceedings in Physics 254 (2021) 27
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— Traditional methods do not measure emitted n information
— Detection of both (n,2n) neutrons captures 100% of strength.

Continuous white-source neutron measurements are ideal, but
neutron TOF degeneracies are problematic
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Degeneracies of White Sources can be Solved

Neutron energies for (n,2n) for
(n,3n) reactions at white sources
are degenerate

M = tm0+t<1>—First TOF

T2 = tine 4 ¢(2) = Second TOF

BUT, measuring one neutron
energy breaks the degeneracy!
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LANSCE can provide continuous (n,2n) and (n,3n) measurements

with emitted neutron energy and anqgular information
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LANSCE can provide continuous (n,2n) and (n,3n) measurements

with emitted neutron energy and anqgular information
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Accomplished with CLYC-7 E, Data and CoGNAC

¢ Upgrade CoGNAC to include
a series of high-volume
CLYC-7 scintillators

e 35CI(n,p) measures E
directly

e EJ-309 and CLYC-6
detectors provide Tf)
measurement to low energy

Applicable to 20+ (n,2n) and (n,3n) measurements for DOE SC NP
FES, and could lead to a decade+ campaign for OES / SAT and PAT

Funded by the DOE Early Career Research Program

~
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GENESIS is performing simultaneous energy differential and integral

measurements of the (n,xny) reactions to help better inform evaluation
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Detector Array for Photons, Protons, and Exotic Residues
B Contact: Alan Mcintosh; alanmcintosh |at| tamu.edu

APPER

Neutron capture x-sect needed on unstable isotopes for

« stockpile science « advanced reactor design

* nuclear forensics * nuclear astrophysics

Can’t measure everything. Can’t measure certain things at all.
Need for nuclear data to constrain models, improve predictions.

AX+2H > AMIX+1H + g

* photons: 800 Ibs BaF2 - individual gamma energy, total
gamma energy, gamma multiplicity; segmented for
Doppler correction

* protons: S3 annular silicon = excitation energy

* exotic residues: zero degree ionization chamber
- discriminate beam & reaction of interest @ >600k pps

* Multiple analysis methods: Forward (multi-step cascade), Oslo, Shape
* Systematic measurements along isotopic chains

* Multiple detector arrays: DAPPER, Hyperion, etc.

* Multiple surrogate reactions: (d,p), (p,p’), (3He,4He), (t,p), (p,d)...

NNSA: DE-NA0003841

et —gded P DE-NA0004150 (CENTAUR)
N °ENERGY ‘:9 e LU*; @@ DOE-NP: DE-FG02-93ER40773

ER ¢jciotron institute LT AL
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Detector Array for Photons, Protons, and Exotic Residues

Contact: Alan Mcintosh; alanmcintosh |at| tamu.edu
A P P E R This work
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Excitation vs gamma energy:
Large yield in total detection 55Fe PSF and NLD in progress
See Arthur Alvarez’s Poster!

High efficiency: 24% @ 8 MeV

clustering (addback)

boosts efficiency E* and Eg contain information on

* Nuclear Level Density
* Photon Strength Function

NNSA: DE-NA0003841
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Overview of HRS Consisting of HRS-HTBL & HRS-SPS

. \EVARTTONGET TGN MYl vs. 4 Tm of S800, Sweeper
From
ARIS « Allowing experiments to run with beams at magnetic rigidities

Fragment at which beam production rates in ARIS Fragment Separator are optimized
Separator ) ) + 8 Tm rigidity is suitable for the envisioned energy upgrade
Diagnostics from 200 MeV/u to 400 MeV/u
Diagnostics
(or reaction target)
i Reaction target
41.70-m long FH3

30.80-m long
Dipole (35 & 60 deg)
Quadrupole X 6

Dipole (22.5 deg) x 4
Quadrupole x 24

HRS-HTBL
High-Transmission
Beamline

HRS-SPS Focal-plane detectors

Spectrometer Section

Fs2

R. Zegers - HRS for Fission Measurements - FIESTA 2024

® Pure FRIB beam is incident on a production target
— Select isotope of interest, and transport to HRS

¢ |Interaction with Reaction Target produces nucleus that will fission “in flight”
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Multiple Operational Modes of HRS-SPS Facilitates
Various Science Programs under Optimal Conditions

= Multiple operational modes available
in a single hardware setup

« Lattice layout is optimized for - -
high-resolution mode in which
the majority of experiments will run

» Neutron-invariant-mass mode
is specialized for invariant-mass
spectroscopy with fast neutron detection

rget

Neutron-invariant-
mass mode

at forward angles, with reaction target
placed in front of the first dipole

= Interface with auxiliary detectors

30.80-m long
Dipole (35 & 60 deg)
Quadrupole X 6

is coordinated with user community

« Input from users (organized through
the HRS Working Group) is continuously
sought to ensure that the HRS design
accommodates user program and

facilitates detector installation
HRS-SPS -FS1 Fs2
Spectrometer Section

R. Zegers - HRS for Fission Measurements - FIESTA 2024

¢ Excitation energy of fissioning nucleus can be measured event-by-event

¢ High rigidities and excitations from surrogate reactions emulate neutron
capture preceding fission
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Adaptability to Measure Variety of Rxn Outputs

0

MSU, LBNL, ND,
TRIUMF:

Plunger
Kéln, MSU

MoNA-LISA =
MoNA-LISA Collaberatig

CAESAR
L /E O MSum

* Able to fission fragment and prompt observable data directly with
CGMF, FREYA, etc.

— Models limited by structure of neutron-rich fragments from fission
‘:: LA-UR-25-21178

[ 13



Microcalorimeters as Specialized Tools for ND

‘l.‘
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* For narrow-focus, specialized cases,
microcalorimeters are unrivaled — mzzcal

e Commonly used for decay or x-ray
spectroscopy

Images from J. Ward, LA-UR-23-32260
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uCals May Yield Elusive Actinide Scattering Data
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Fig. Courtesy of
J. Surbrook
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The onset of the 2*° Pu(n,n’) reaction to the 7.9 keV first excited state is a
fundamental missing component for nuclear model development

® The trajectory of o(n,n’) can vary wildly based on details of first inelastic

channel

uCals can observe both (n,n) and (n,n') using only the recoiling nucleus

~
%@ LAuUR2521178
&

| 15



uCals May Yield Anqular Distributions Too!

Fig. Courtesy of 4.00E-01
J. Surbrook 3.50E-01 S
°
°
3.00E-01 o
2.50E-01 5
detector energy 2.00E-01 .
(kev) ° ©20 keV
o°°
1.50E-01 o ° 10 key
°
1.00E-01 q °
°
o e
5.00E-02 d ¢
tq{°
0.00E+00 e
0 50 100 150 200
Ahgle bf OutgoingNeutron

The energy deposited into the pCal is correlated to the energy
and angle of the emitted neutron

— Neutron angular distributions can be calculated from measurements of

the parent nucleus
t:: LA-UR-25-21178 | 16



14 MeV Measurements with DT Generators

Fig. Courtesy of J. Surbrook
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High-precision 14 MeV Measurements for fusion
and more applications are possible

See poster by Jason Surbrook
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The Berkeley team is also developing a DT-API system on campus to

measure (n;4,xny) cross sections with little-to-no flux uncertain
&
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Simple Count Rate Estimate

Ra—y/n = U(N)sampleCDn
For a 10 g sample 1 m away from
a 1 cm scintillator @ 5 cm:

Nsgmple = 1023atoms
2

[} 108n X ! 10° "
=~ —_ —_— —_—
n s 100 day
108
- Ra—y/n =

o (barn) e day

10° peak counts/day for a
0.1% detection efficiency

See L. Bernstein talk tomorrow in Fusion Nuclear Data session
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THANK YOU!

—CoGNAC (n,zn) detector development funded by DOE Office of
Science via Early Career Research Program.

—uCal initial investigations for nuclear data funded by NA-113, as part of
the CoGNAC neutron scattering program at LANL.

—GENESIS and DT-API work at LBNL were performed under the
auspices of the Office of Nonproliferation Research and Development
(NNSA/NA-22) and the US Nuclear Data Program at Lawrence Berkeley
National Laboratory (Contract No. DEAC02-05CH11231) and the
Stewardship Science Academic Alliance Program under

Grant DE-NA0004064 at the University of California, Berkeley.

Direct questions to kkelly@lanl.gov
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