

Emerging Detection Capabilities for Nuclear Deterrence

Keegan J. Kelly

2025 Workshop for Applied Nuclear Data Activities

Outline

- White-Source (*n*,2*n*) and (*n*,3*n*) Measurements Capabilities with CLYC-7 *n*-*n* Coincidences
- The DAPPER array
- GENESIS Forward Analysis at the LBNL 88-inch Spectrometer
- Exotic fission measurements with the FRIB High-Rigidity Spectrometer
- Microcalorimeters for Nuclear Data Measurements

Fusion Reactors Rely on (n,2n) and (n,3n) **Rxns**

ITER_D_3FM52L - Radiation environment for equipment during operations by R Juarez

- *n* breeding essential for *t* production via ⁶Li(*n*,*t*), to drive *d*-*t*
 - ⁹Be(*n*,2*n*) and ²⁰⁸Pb(*n*,2*n*)
- Activation-based flux measurements motivate a suite of (n,2n) measurements

<u>Traditionally: γ -rays, Activation, or n Counting</u>

Calculated with CoH₃ - T. Kawano, Springer Proceedings in Physics 254 (2021) 27

- \rightarrow Traditional methods do not measure emitted n information
- \rightarrow Detection of both (*n*,2*n*) neutrons captures 100% of strength.

Continuous white-source neutron measurements are ideal, but neutron TOF degeneracies are problematic

Degeneracies of White Sources can be Solved

Neutron energies for (n,2n) for (n,3n) reactions at white sources are degenerate

$$\begin{array}{rcl} T_n^{(1)} &=& t_n^{inc} + t_n^{(1)} = \mbox{First TOF} \\ T_n^{(2)} &=& t_n^{inc} + t_n^{(2)} = \mbox{Second TOF} \end{array}$$

BUT, measuring one neutron energy breaks the degeneracy!

LANSCE can provide continuous (n,2n) and (n,3n) measurements with emitted neutron energy and angular information

Degeneracies of White Sources can be Solved

Neutron energies for (n,2n) for (n,3n) reactions at white sources are degenerate

$$\begin{array}{rcl} T_n^{(1)} &=& t_n^{inc} + t_n^{(1)} = \mbox{First TOF} \\ T_n^{(2)} &=& t_n^{inc} + t_n^{(2)} = \mbox{Second TOF} \end{array}$$

BUT, measuring one neutron energy breaks the degeneracy!

LANSCE can provide continuous (n,2n) and (n,3n) measurements with emitted neutron energy and angular information

Accomplished with CLYC-7 E_n Data and CoGNAC

- Upgrade CoGNAC to include a series of high-volume CLYC-7 scintillators
- ${}^{35}\text{Cl}(n,p)$ measures $E_n^{(1)}$ directly
- EJ-309 and CLYC-6 detectors provide $T_n^{(2)}$ measurement to low energy

Applicable to 20+(n,2n) and (n,3n) measurements for DOE SC NP FES, and could lead to a decade+ campaign for OES / SAT and PAT

Funded by the DOE Early Career Research Program

GENESIS is performing simultaneous energy differential and integral measurements of the $(n,xn\gamma)$ reactions to help better inform evaluation

Neutron capture x-sect needed on unstable isotopes for

- stockpile science
- advanced reactor design
- nuclear forensics
- nuclear astrophysics

Can't measure everything. Can't measure certain things at all. Need for nuclear data to constrain models, improve predictions.

 $^{A}X + {}^{2}H \rightarrow {}^{A+1}X + {}^{1}H + g$

- photons: 800 lbs BaF2 → individual gamma energy, total gamma energy, gamma multiplicity; segmented for Doppler correction
- protons: S3 annular silicon → excitation energy
- exotic residues: zero degree ionization chamber
 →discriminate beam & reaction of interest @ >600k pps
 - Multiple analysis methods: Forward (multi-step cascade), Oslo, Shape
 - · Systematic measurements along isotopic chains
 - Multiple detector arrays: DAPPER, Hyperion, etc.
 - Multiple surrogate reactions: (d,p), (p,p'), (3He,4He), (t,p), (p,d)...

Detector Array for Photons, Protons, and Exotic Residues

Contact: Alan McIntosh; alanmcintosh |at| tamu.edu

DAPPER

High efficiency: 24% @ 8 MeV

clustering (addback) boosts efficiency

Excitation vs gamma energy: Large yield in total detection

- E* and Eg contain information on
- Nuclear Level Density
- Photon Strength Function

55Fe PSF and NLD in progress See Arthur Alvarez's Poster!

NNSA: DE-NA0003841 DE-NA0004150 (CENTAUR) DOE-NP: DE-FG02-93ER40773

Overview of HRS Consisting of HRS-HTBL & HRS-SPS

- Pure FRIB beam is incident on a production target
 - Select isotope of interest, and transport to HRS
- Interaction with Reaction Target produces nucleus that will fission "in flight"
 LA-UR-25-21178

Multiple Operational Modes of HRS-SPS Facilitates Various Science Programs under Optimal Conditions

- Excitation energy of fissioning nucleus can be measured event-by-event
- High rigidities and excitations from surrogate reactions emulate neutron capture preceding fission

Adaptability to Measure Variety of Rxn Outputs

- Able to fission fragment and prompt observable data directly with CGMF, FREYA, etc.
 - Models limited by structure of neutron-rich fragments from fission

Microcalorimeters as Specialized Tools for ND

- For narrow-focus, specialized cases, microcalorimeters are unrivaled
- Commonly used for decay or x-ray spectroscopy

Images from J. Ward, LA-UR-23-32260

<u><u><u>µ</u>Cals May Yield Elusive Actinide Scattering Data</u></u>

The onset of the 239 Pu(n,n') reaction to the 7.9 keV first excited state is a fundamental missing component for nuclear model development

• The trajectory of $\sigma(n,n')$ can vary wildly based on details of first inelastic channel

 μ Cals can observe both (n,n) and (n,n') using only the recoiling nucleus

<u>µCals May Yield Angular Distributions Too!</u>

The energy deposited into the μ Cal is correlated to the energy and angle of the emitted neutron

 \rightarrow Neutron angular distributions can be calculated from measurements of the parent nucleus

14 MeV Measurements with DT Generators

Fig. Courtesy of J. Surbrook

High-precision 14 MeV Measurements for fusion and more applications are possible

See poster by Jason Surbrook

The Berkeley team is also developing a DT-API system on campus to measure $(n_{14},xn\gamma)$ cross sections with little-to-no flux uncertainty

Simple Count Rate Estimate

$$R_{\alpha-\gamma/n} = \sigma(N)_{sample} \Phi_n$$

For a 10 g sample 1 m away from a 1 cm scintillator @ 5 cm: $N_{sample} \approx 10^{23} atoms$ $\Phi_n \approx 10^8 \frac{n}{s} \times \frac{1}{100}^2 \longrightarrow 10^9 \frac{n}{day}$ $\rightarrow R_{\alpha-\gamma/n} = \frac{10^8}{\sigma (barn) \cdot day}$

10⁵ peak counts/day for a 0.1% detection efficiency

See L. Bernstein talk tomorrow in Fusion Nuclear Data session

THANK YOU!

 \rightarrow CoGNAC (*n*,*xn*) detector development funded by DOE Office of Science via Early Career Research Program.

 $\rightarrow \mu$ Cal initial investigations for nuclear data funded by NA-113, as part of the CoGNAC neutron scattering program at LANL.

→GENESIS and DT-API work at LBNL were performed under the auspices of the Office of Nonproliferation Research and Development (NNSA/NA-22) and the US Nuclear Data Program at Lawrence Berkeley National Laboratory (Contract No. DEAC02-05CH11231) and the Stewardship Science Academic Alliance Program under Grant DE-NA0004064 at the University of California, Berkeley.

Direct questions to kkelly@lanl.gov

