

Presented by:
Douglas G. Bowen, Ph.D.
NCSP Execution Manager
Section Head, Nuclear Data, Criticality Safety, and Radiation Transport
Oak Ridge National Laboratory

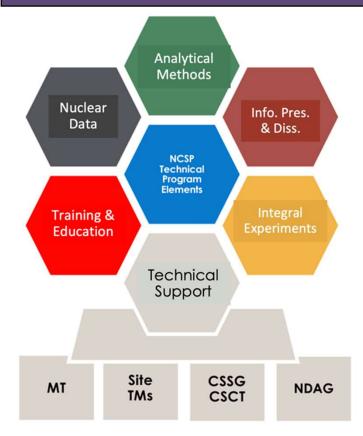
Background / History-Mission Vision-Organization

Early history

- Defense Nuclear Facilities Safety
 Board (DNFSB) Recommendations:
 - 93-2 (3/23/1993): <u>Need for a general-purpose critical experiment capability</u> that will ensure safety in handling and storage of fissionable material.
 - 97-2 (5/19/1997): Need for improved criticality safety practices and programs to alleviate potential adverse impacts on safety and productivity of DOE operations.
- DOE Implementation Plan for 93-2 and 97-2 recommendations resulted in establishment of the US NCSP

NCSP 5-year plan

Mission


Provide sustainable expert leadership, direction and the technical infrastructure necessary to develop, maintain, and disseminate the essential technical tools, training, and data required to support safe, efficient fissionable material operations within DOE.

Vision

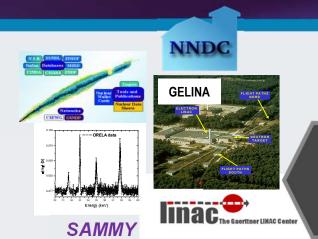
Continually improving, adaptable, and transparent program that communicates and collaborates globally to incorporate technology, practices, and programs to be responsive to the essential technical needs of those responsible for developing, implementing, and maintaining nuclear criticality safety.

NCSP organization

TS – Technical Support

MT - Management team

TMs - Task managers


CSSG – Criticality Safety Support Group

CSCT - Criticality Safety Coordinating Team

NDAG - Nuclear Data Advisory Group

Technical Program Element Activities

NJOY

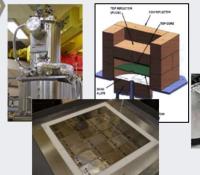
AM

NCSP

Goals

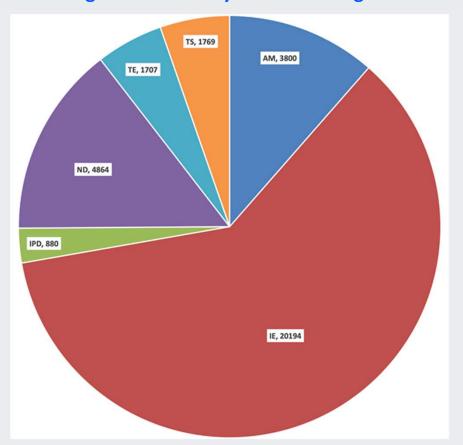
IPD

NCSP Website https://ncsp.llnl.gov

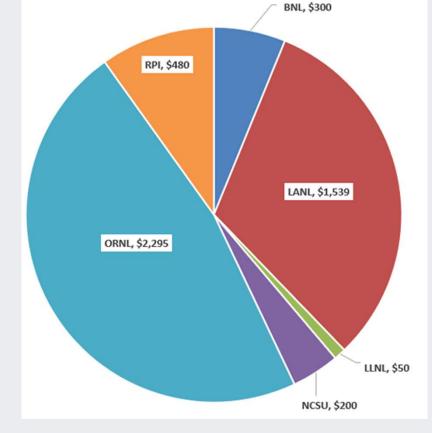


ΤE

ND



NCSP Nuclear Data Tasks and Budget (2025)



FY25 Budget \$31,100k

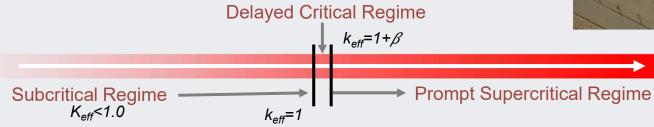
NCSP Funding Distribution by Technical Program Element

NCSP Nuclear Data Funding Distribution by NCSP Site

FY2025 Nuclear Data Funding: \$4,864K (16%)

NCSP Integral Experiments

- NCSP integral measurements are performed at
 - Sandia National Laboratories (SNL) and
 - National Criticality Experiments Research Center (NCERC), currently operated by Los Alamos National Laboratory
 - NCERC is located at the Nevada National Security Site (NNSS) inside the Device Assembly Facility (DAF)
- Types of experiments that can be performed
 - Subcritical
 - Rocky Flats shells, BeRP ball, Np-237 sphere, TACS shells, etc.
 - Critical/Delayed Supercritical
 - NCERC: Planet, Comet, Godiva IV, Flattop
 - Sandia: Sandia Pulse Reactor critical assembly (2 fuel types, currently)
 - Prompt Supercritical
 - NCERC: Godiva IV (< 300 deg. C pulse)


DAF/NCERC

SNL/TA-V/SPR Facility

Experiment
Funding:
\$20,194K (65%)

NCSP Differential Experiments

LANL LANSCE

- NCSP differential nuclear data measurements are performed at
 - JRC-Geel GELINA Facility (Geel, Belgium)
 - GELINA is available via collaboration between DOE/NNSA NA-20 and Euratom (JRC-Geel)
 - ORNL Spallation Neutron Source (SNS) (Oak Ridge, TN)
 - Rensselaer Polytechnic Institute Linear Accelerator (RPI LINAC) (Troy, NY)
 - LANL (Los Alamos, NM) LANSCE/Lujan Neutron Scattering Center (LANSCE)

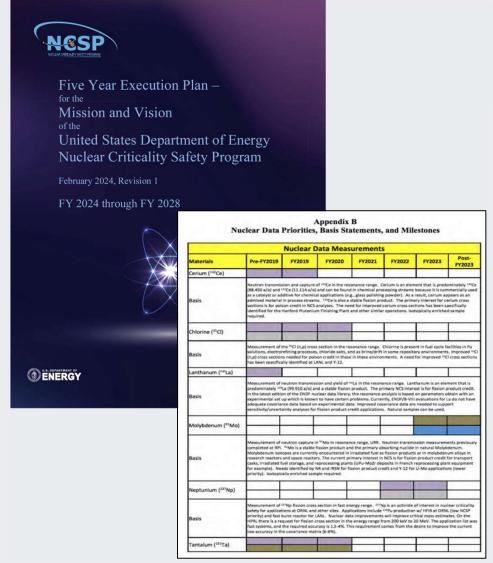
Los Alamos

Photos referenced from:

http://www.linac.rpi.edu/public_html/accelerator.html

https://neutrons.ornl.gov/sns

https://ec.europa.eu/jrc/en/research-facility/linear-electron-accelerator-facility


https://lansce.lanl.gov/

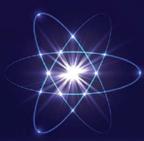
Nuclear Data Measurements & Evaluation Work for NCSP

- Objective: Provide measured and evaluated thermal, resonance, unresolved resonance, and fast region cross section data to address the priority NCSP nuclear data needs
- Vision: Addresses multiple Nuclear Data 5- and 10-year goals and attributes identified in the NCSP Vision
- Final product: Rigorous ENDF/B evaluations produced from cross section measurements and analyses.
- Measurement work effort focused on NCSP priorities by NCSP Nuclear Data Advisory Group (NDAG)
- NCSP 5-year plan provides a listing of Nuclear Data measurement and evaluation priorities for the program
- DOWNLOAD FY2025 5-year plan:
 - https://ncsp.llnl.gov/sites/ncsp/files/2025-01/ncsp_fiveyear execution plan fy2025-2029-r2.pdf

FY2025 NCSP "Strategic Priorities List"

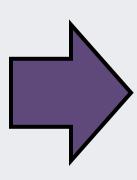
Five Year Execution Plan –

for the


Mission and Vision

of the

United States Department of Energy Nuclear Criticality Safety Program


OCTOBER 1, 2024 (REV. 1)

FY 2025 through FY 2029

Table 2.2 NCSP "Strategic Priorities List" for FY2025

#	Milestone Description	TPE	Lead Site
1	Process ENDF/B-VIII.1 into ACE format for MCNP and release via the LANL nuclear data website	AM	LANL
2	Complete updated SlideRule plutonium calculations	AM	IRSN/ORNL/LLNL
3	Document investigated analysis methods associated with criticality monitoring for Fukushima fuel debris removal. (IE35)	IE	LANL
4	Increase Planet's rated load capacity.	IE	LANL
5	Perform NCERC critical experiment for Ta validation supporting plutonium processing operations. (IER 607)	IE	LANL
6	Complete Section 1 draft of the PFUNS ICSBEP benchmark evaluation (IER 153).	IE	LANL
7	Submit CERBERUS benchmark evaluation to the ICSBEP TRG. (IER 537)	IE	LANL
8	Submit Godiva Benchmark Evaluation to ICSBEP TRG (IER 555)	IE	LANL
9	Execute MOX Experiments at NCERC in collaboration with IRSN (IER 296)	IE	LANL/IRSN
10	Report on CAAS testing for AWE (IER 605)	IE	LANL/AWE
11	Submit TEX-CI (IER 499) benchmark to ICSBEP TRG.	IE	LLNL
12	Complete TEX-Fe Experiments (IER 519)	IE	LANL/LLNL
13	Complete procurement of materials for Low Temperature TEX (IER 479)	IE	LANL/LLNL
14	Complete procurement of materials for SPRF/CX temperature dependent benchmark (IER 304).	IE	SNL/ORNL
15	Complete NCERC Control Room #1 upgrades*	IE	LANL
16	Submit benchmark evaluation of epithermal experiments to the ICSBEP TRG (IER 441)	IE	SNL/ORNL
17	Complete final design for TEX-Li (CED-2) (IER 575)	IE	LLNL
18	Update Pu-240 evaluation to include new LANSCE / Chi-Nu prompt fission neutron spectra	ND	LANL
19	Complete Zr-92 nuclear data measurements at GELINA	ND	ORNL
20	Complete Phase 2 of RPI LINAC refurbishment	ND	RPI/NNL
21	Complete unit acceptance tests for accelerator sections #2 and #3	ND	RPI/NNL
22	Provide a summary of LfE Database entries provided by the NCS community	IPD	ORNL/LLNL

*Funding for control room upgrades provided by NA-19's Capabilities-based Investment Program (CBI)

FY2025 NCSP "Strategic Priorities List"

	•		
14	Complete procurement of materials for SPRF/CX temperature dependent benchmark (IER 304).	IE	SNL/ORNL
15	Complete NCERC Control Room #1 upgrades*	IE	LANL
16	Submit benchmark evaluation of epithermal experiments to the ICSBEP TRG (IER 441)	IE	SNL/ORNL
17	Complete final design for TEX-Li (CED-2) (IER 575)	IE	LLNL
18	Update Pu-240 evaluation to include new LANSCE / Chi-Nu prompt fission neutron spectra	ND	LANL
19	Complete Zr-92 nuclear data measurements at GELINA	ND	ORNL
20	Complete Phase 2 of RPI LINAC refurbishment	ND	RPI/NNL
21	Complete unit acceptance tests for accelerator sections #2 and #3	ND	RPI/NNL
22	community	IPD	ORNL/LLNL

NCSP Nuclear Data Measurements and Evaluations in C Progress – FY2025 5-Year Plan

Measurements				
Materials	Site			
Cesium (133Cs)	LANL			
Chlorine (35Cl)	ORNL, LANL			
Chromium (50,52,53Cr)	ORNL			
Fluorine (19F)	ORNL			
Plutonium (²³⁹ Pu)	LANL			
Plutonium (²⁴⁰ Pu)	LANL, LLNL			
Samarium (¹⁴⁹ Sm)	LANL			
Tantalum (Ta)	RPI			
Uranium (²³³ U)	LANL			
Zirconium (^{90,91,92,94,96} Zr)	ORNL			
Beryllium (Be)	NNL			
Mobilmet	RPI, NNL			
Petrolatum	NNL			

Evaluations					
Materials	Site				
Beryllium (⁹ Be)	LANL				
Carbon (12C)	LANL				
Chlorine (35,37Cl)	ORNL, LANL				
Copper (63,65Cu)	ORNL, LANL				
Fluorine (19F)	ORNL				
Gadolinium (155,157Gd)	ORNL, NNL				
Hafnium (^{176,177,178,179,180} Hf)	ORNL, NNL				
Iron (^{54,56,57} Fe)	ORNL, BNL				
Iron (⁵⁶ Fe)	ORNL, BNL				
Lanthanum (La)	ORNL, LANL				
Lithium (⁶ Li)	LANL				
Molybdenum (⁹⁵ Mo)	ORNL, NNL				
Nitrogen (14N)	ORNL				
Oxygen (16O)	LANL, ORNL				

Evaluations				
Materials	Site			
Plutonium (²³⁸ Pu, ²⁴¹ Pu, ²⁴² Pu)	LANL			
Plutonium (²³⁹ Pu)	LANL, ORNL			
Plutonium (²⁴⁰ Pu)	ORNL, LANL			
Rhodium (103Rh)	ORNL, NNL			
Uranium-233	LANL			
Uranium-234	ORNL, LANL			
Uranium-235	ORNL, LANL			
Uranium-236	LANL			
Uranium-238	LANL, BNL			
Vanadium (51V)	ORNL			
Zirconium (^{90,91,92,94,96} Zr)	ORNL, RPI, NNL, BNL			
Light Paraffinic Oil (Mineral Oil)	LLNL, NCSU			
Triuranium Octoxide (U ₃ O ₈)	NCSU			

Down

Strategic Priority Item

NCSP Cross-Cutting Nuclear Data Work

- NCSP Nuclear Data work items support many different programs
 - Improvements to U-235, U-238, and Pu-239 are cross-cutting for virtually all programs
 - U-233, Pu-240, Np-237 of interest to NNSA (NA-10 & NA-20), DOE-NE, NCSP international collaborators, and the NRC
 - Fe is cross cutting for virtually all programs
 - Chlorine is cross cutting for NNSA NA-10 (electrorefining, Pu aqueous chloride processing, repository applications) and DOE-NE/NRC (molten chloride salt reactors) where there a significant uncertainties associated with the (n,p) reaction. Needs for repository situations (DOE-EM/WIPP)
 - Fission products useful for programs that utilize burnup credit analysis
 - Zr & Hf of interest to NNSA NA-30 (NR)
 - Ta cross cutting with NNSA NA-10 for pit production
 - Thermal Scattering Law work is cross-cutting with NNSA (NA-10, NA-20), DOE-NE, and NRC

NCSP Benefits/Successes

- NCSP support of each major ENDF/B library release supports reduced bias in eigenvalue (k_{eff}) computations to support nuclear criticality safety limit development
 - NCSP provided significant support for the ENDF/B-VIII.1 library
- Integral experiment capabilities at NCERC and Sandia are funded by the NCSP to ensure facility availability for sponsor use (non-NCSP) and for new critical experiments to support the NCS community
- NCSP performs differential measurements at RPI, LANL (LANSCE), ORNL (Spallation Neutron Source) and GELINA (Geel, Belgium)
- NCSP funds all aspects of the nuclear data pipeline to support the NCS community
 - Supporting process operations with hands-on operations with fissionable material
- NCSP supports university proposals for our human resource pipeline many success stories here

Questions

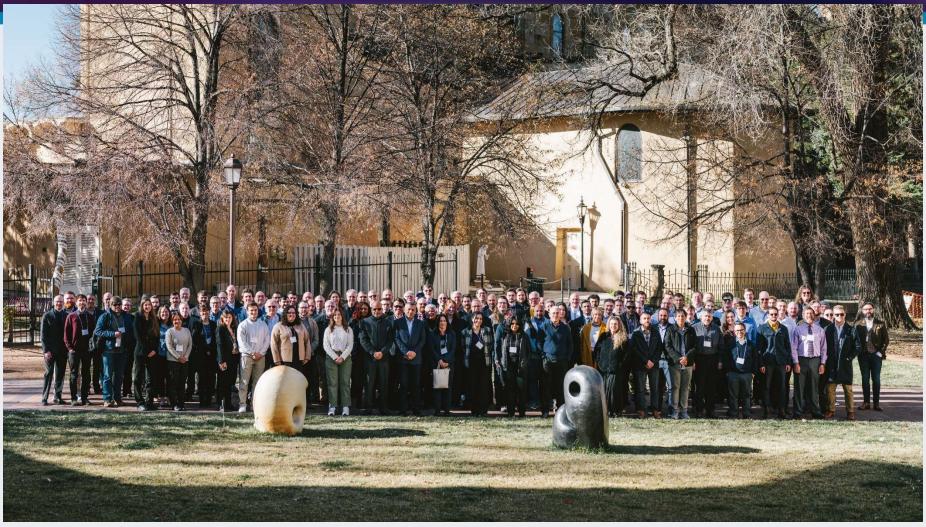


Photo from our 2025 Technical Program Review Hosted by Los Alamos National Laboratory