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Fission and Fusion from a Nuclear Scientist/Data Person’s Perspective

Fission

1. 85% of the energy 1s 1n the fission
fragments, which can be stopped in =~ a
few um via electronic stopping.

2. Fuel needs to be dug up from the earth.
Reactors MUST lose most of the

neutrons keere

4. Generates some long-lived fission

fragments and actinides with
proliferation concerns (Pu)

Fusion

1. A 14 MeV neutron contains 80% of
the energy and needs 10’s of cm to

be stopped via nuclear scattering

2. Y of the fuel needs to be made

neutronsjto

create 1.1-12 tritons per fusion.

4. Generates some long-lived

activation products and material
with proliferation concerns (1)

Neutron transport/capture are important to both
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Reaction evaluation in a nutshell (Thanks to D. Brown!)

You shouldn’t use
integral
benchmarks alone
to gain confidence

A e
\ Experiment )

e over your
\ everything predictive
(— with capabilities if there
ENDF aroitrry q is a lack of
Evaluation / Mn differential data to

guide evaluation

e ‘ ‘ Thanks to Dave Brown (BNL/NNDC) WANDA 2005
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Where does Nuclear Data Play a role 1n a fusion energy system?
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production/transport
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Transmutation/Activation & Gamma production 1s important through the fusion energy system
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Each High-Z (n,2n) reaction results in
1-3 y-rays with a 2E = 3-8 MeV
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Tritium Breeding has focused on °Li(n,a)t but '°B might be of interest too

First principles review of options for tritium breeder and neutron multiplier materials for breeding blankets in fusion reactors

This peak in 1n
°Li(n,t)o. makes
“fusion-eers”

happy ©
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An activation experiment at
14 MeV and a coincident
LENZ-style experiment might
help tritium production
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Is ''B(n,0)’Li
REALLY that big?

Or does this curve have

contributions from
HB(n,0)’Li"— t+o ?

04

S =4.63 MeV
[

E, +2.79 MeV

P L....

"Li
Help Mark Paris!

1'B+n
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Tritium Breeding has focused on °Li(n,a)t but '°B might be of interest too

Here’s all the available EXFOR data for '°B(n,o) No measurements
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Additional measurements, especially
between 6.5 & 14 MeV are needed
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But 14 MeV looks
promising

Thanks to Mike Loughlin & Paul Humrickhouse (ORNL)
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Let’s look at an important materials damage data 1ssue for MCF:

160 for REBCO (MCF magnets
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The non-elastic channels are about
as large at fast energies (£,> 3
MeV) and they contribute to both
opps AND gas production

Elastic scatter (main constituent
of opp, at fast energies) has been

measured for £, > 3 MeV

il - WANDA 2025
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What differential data exists for the 1°O non-elastic channels?

Inelastic scatter, including y-ray production, is almost completely unmeasured)
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Helium production: Only two

measurements which disagree with Hydrogen production: Better agreement
each other and the evaluation between data sets and evaluation

A WANDA 2025
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Fortunately, parts of DOE have been investing in improving fast neutron

scattering data, offering fusion a chance to address fusion needs incrementally
GENESIS @ LBNL

LENZ @ LANL Chi-nu - CoGNAC @
Gas Production LANL - Neutron Scatter ~ Neutron Scatter and y-ray
l\ig (;;? Cross Sections Cross Sections production Cross Sections
P Np i
S Am
Ar NA-22
\\ /as
y funded

Ti
As C & Na

Kr
L0 NA-113
i Sh has funded
La x. Bi&Nb
DOE-NE has funded Fe, Cl & U . _
Table 2 from the FY21 NA-22 portion of | Y€@I'S, SO advance planning using the WANDA/NDIAWG

process 1s essential

First | Follow Remaining
Priorit -up

BUT: the measurement — evaluation time scale takes

the Nuclear Data Interagency Working
13

Group FOA
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Some nice work from LANL are highlighting these uncertainties, but absolute

normalization 1s tricky and it often doesn’t cover the entire energy range
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J.-Ch. Sublet ef al.. Eur. Phys. J. Plu @ 34: 350 S A. Kuvin ef al.. Phys. Rev. C 105. 04460

Absolute measurements at 14 MeV are needed
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A joint JHUAPL/NNDC/Berkeley team™ are using a DT-API system to measure

(n,4,xny) cross sections (Thanks Keegan for the advance advertisement!)

Simple Count Rate Estimate

= y-ray/ Ra—ym = 0(N)samptePn
neutron detector For a 10 g sample 1 m away from
a 1 cm scintillator @ 5 cm:

D+T beam Nsampie = 10%°atoms

Wosr 2
e By~ 1090 x—— 109 =
\ nExODuS @ UCB s~ 100 day
"‘ e, N 0000 R._ —
= N B — Namy/n T (barn) ¢ day

__:—E =

-

Generator 10° peak counts/day for a
= 0.1% detection efficiency

——

=i
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For Materials Damage let’s look WAY BACK to WANDA 2019:

Materials Damage Session Findings/Recommendations (C. Romano)

. ENDF is missing data for recoils an
. Inaccuratata caused serious miscalculation of materials lifetimes

. Need to understand how changed materials properties change the neutronics
Recoil Alpha

i Transmutation Nucleus *. 2 .° " Particle
- Porosity =
«  Chemical bonds

° Processing of the data in NJOY needs modernization to meet the needs of the fusion community

. Current models do not determine the size of vacancies

adionuclides produced under transmutation might create further Primary Knock-on Atoms (PKAs) as the
AV, and SO the rate of these must also be quantlfled

2t Materials and Energy. 9.

7R Thanks to Cathy Romano for taking
BERKELEY LAB  \ 0 on this topic for the first time!

WANDA 2025 16



For Materials Damage let’s look WAY BACK to WANDA 2019:

Materials Damage Session Findings/Recommendations (C. Romano)

‘There should there be a coordinated and comprehensive materials damage
database for validation of calculations

Idaho National Laboratory has a database of irradiation materials available
to borrow
Includes 1rradiation data but no post irradiation testing data

- Improved dosimetry standards will be necessary for 14 MeV neutrons
Post Irradiation Testing

L] L] L] L]
..-‘ - - - - ‘.‘.. ‘..‘. - / . .. - .'

Impowble to measure sigma-dpa due te annealing: Can look at

crysta 11728304 J X0 R 4B (040 4 60 (444 o MY 65U 4417 2 &pe

eed to standardize materials analysis methods and format for 1rradiated
materials data

Thanks to Cathy Romano for taking
on this topic for the first time!

WANDA 2025 18
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- Radiation 1s deposited in an

absorber material and read out

through a thermal resistance at

low temperature.

3% LEU Sample — atrecoil!?

NRT dpa/year
(e)]

Source can be the

[— w0
absorber or embedded 103,
n it. “ | o
S 102 o
L
Silicon 3.6 eV 10 2
Germanium 29¢eV
uCal ~30 ueV 4000
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Differential o,,,, and gas production measurements using a
microcalorimeter coupled to a DT-API neutron generator

12

blpa in Ni, fusion

TENDL-2017
ENDF/B-VIII.O

Energy [keV]

WANDA 2025

4 |
2t 12.4% 15.1%
5.7% 1 4%
0 — F
2 i 0 HST
A &
e A 3
Tleree wyele
See Keegan Kelly's
talk from yesterday




Differential o,,,, and gas production measurements using a

microcalorimeter coupled to a DT-API neutron generator

Microcal Simple Count Rate Estimate
Sample R“—)’/n = G(N)SampleCDn

For a 1 pm thick sample (Nygmpie = 10°°atoms) @ 10 cm:

Tagged 3 1/ 2 11
Neutron O, = 10515 X 5/19 — Pn = 10 n/day
Cone D~+T beam - Ry—ym =107 /o (barn) « day

;. /«»,—,);Iﬁ*"‘f—’iw | s -~ %
. e ._ Energy deposited in *°Fe by a 14.1 MeV neutron

(n,el) or (n,inl) < 247keV  o{4** = 0.6 b
(n,p) (Q=-3.0 MeV) <I1138keV oM% ~0.1b
(n,a) (Q=10.32 MeV) <14.7MeV a{4** =~ 0.1 mb
(npn) (Q=-10.2 MeV) <42MeV oM ~ 0.1b

All major parts of opp, are resolvable

WANDA 2025 22



How about integral measurements using high-flux neutron beams from

thick target deuteron breakup (IFMIF etc.)?
Future Facilities (IFMIF”FPNS) Current Facilities

uuuuuuuuuu 7 A
2.0 | ( [ )
R Q

i ‘llllll'llHIIID i
“HHHM'W

1-——-1

Height (cm)

\
ad

e IFMIF/FPNS plan to achieve multi-DPA ¢ The same sppe(c}trum 1S
damage in 100+ cm? volumes using thick neutron single-event ¢
target deuteron breakup radioisotope producti
Cost: =§10%° + years to design & build % of the flux in =1 cnr

Integral tests can be performed now, but they are NOT a substitute for differential data

2L.A. Bernstein et al., Systems and methods for producing

U : o0 WARNDA 2025 actinium-225, WO02020210147A1, (2019). Patent pending.




Conclusions

Many nuclear data needs for fusion energy overlap with other programs,
allowing them to benefit from work being done by DOE/NP, the NNSA,
DOE-NE, BUT numerous gaps exist

Differential data 1s lacking for trittum breeding, materials damage and
gamma-ray production

The combination of DT neutron generators with Associated Particle
Imaging and Microcalorimetry offers a chance to address nuclear data
gaps relevant to fusion:

Opportunities exist for fusion energy to partner with other nuclear data
users to accelerate progress and mitigate risk.

Thanks for your attention!
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