# An Assessment of Nuclear Data for Fusion and the Need for New Experiments

#### Lee Bernstein

University of California - Berkeley Lawrence Berkeley National Laboratory

WANDA 2025 Washington DC







### Fission and Fusion from a Nuclear Scientist/Data Person's Perspective

### **Fission**

- 1. 85% of the energy is in the fission fragments, which can be stopped in  $\approx$  a few  $\mu$ m via *electronic stopping*.
- 2. Fuel needs to be dug up from the earth.
- 3. Reactors MUST lose most of the neutrons made per fission.
- 4. Generates some long-lived fission fragments and actinides with proliferation concerns (Pu)

### **Fusion**

- 1. A 14 MeV neutron contains 80% of the energy and needs 10's of cm to be stopped *via nuclear scattering*
- 2. ½ of the fuel needs to be made
- Reactor MUST use neutrons to create 1.1-12 tritons per fusion.
- 4. Generates some long-lived activation products and material with proliferation concerns (T)

Neutron transport/capture are important to both



## Reaction evaluation in a nutshell (Thanks to D. Brown!)



You shouldn't use integral benchmarks alone to gain confidence over your predictive capabilities if there is a lack of differential data to guide evaluation

## Where does Nuclear Data Play a role in a fusion energy system?





### Transmutation/Activation & Gamma production is important through the fusion energy system

- Important Low-Z Nuclei: **F**, Li, Be, B, O
  - Channels:  $(n,\gamma)$ , (n,p), (n,pn),  $(n,\alpha)$ ,  $(n,\alpha n)$ , (n,2n)
  - BUT: Most don't lead to long-lived radioactive nuclei
  - Chemical transformation could pose operational risks
  - Important High-Z Nuclei: **Pb**, W, Ta, Bi
    - Channels:  $(n,\gamma)$ , (n,2n), (n,3n)

Each High-Z (n,2n) reaction results in 1-3  $\gamma$ -rays with a  $\Sigma E_{\gamma}$ = 3-8 MeV





### Tritium Breeding has focused on <sup>6</sup>Li(n,α)t but <sup>10</sup>B might be of interest too

First principles review of options for tritium breeder and neutron multiplier materials for breeding blankets in fusion reactors





### Tritium Breeding has focused on <sup>6</sup>Li(n,α)t but <sup>10</sup>B might be of interest too

Here's all the available EXFOR data for  ${}^{10}B(n,\alpha)$ 



Additional measurements, especially between 6.5 & 14 MeV are needed

No measurements above 6.52 MeV!

There's virtually no data for <sup>10</sup>B(n,t) itself



But 14 MeV looks promising



# Let's look at an important materials damage data issue for MCF: 16O for REBCO (MCF magnets)





### What differential data exists for the <sup>16</sup>O non-elastic channels?

### Inelastic scatter, including \gamma-ray production, is almost completely unmeasured)





## Fortunately, parts of DOE have been investing in improving fast neutron scattering data, offering fusion a chance to address fusion needs incrementally



Table 2 from the FY21 NA-22 portion of the Nuclear Data Interagency Working Group FOA LENZ @ LANL
Gas Production
Cross Sections

Chi-nu → CoGNAC @
LANL - Neutron Scatter
Cross Sections

GENESIS @ LBNL
Neutron Scatter and γ-ray
production Cross Sections



BUT: the measurement → evaluation time scale takes years, so advance planning using the WANDA/NDIAWG process is *essential* 



## Some nice work from LANL are highlighting these uncertainties, but absolute normalization is tricky and it often doesn't cover the entire energy range



Absolute measurements at 14 MeV are needed



## A joint JHUAPL/NNDC/Berkeley team\* are using a DT-API system to measure $(n_{14},xn\gamma)$ cross sections (*Thanks Keegan for the advance advertisement!*)



### **Simple Count Rate Estimate**

$$R_{\alpha-\gamma/n} = \sigma(N)_{sample} \Phi_n$$

For a 10 g sample 1 m away from a 1 cm scintillator @ 5 cm:

$$N_{sample} \approx 10^{23} atoms$$

$$\Phi_n \approx 10^8 \frac{n}{s} \times \frac{1}{100}^2 \longrightarrow \approx 10^9 \frac{n}{day}$$

$$\rightarrow R_{\alpha-\gamma/n} = \frac{10^8}{\sigma \, (barn) \bullet day}$$

10<sup>5</sup> peak counts/day for a 0.1% detection efficiency



# For Materials Damage let's look WAY BACK to WANDA 2019: Materials Damage Session Findings/Recommendations (C. Romano)

- ENDF is missing data for recoils and  $(n,\alpha)$ 
  - Inaccurate  $(n,\alpha)$  lata caused serious miscalculation of materials lifetimes
- Need to understand how changed materials properties change the neutronics
  - Transmutation
  - Porosity
  - Chemical bonds



- Processing of the data in NJOY needs modernization to meet the needs of the fusion community
- Current models do not determine the size of vacancies
- Stopping Powers are not well understood
- Radionuclides produced under transmutation might create further Primary Knock-on Atoms (PKAs) as they decay, and so the rate of these must also be quantified.
  - Gilbert, Mark & Subiet, Jean Christophe (2016) PKA distributions: Contributions from transmutation products and from redirection decay. Nuclear Materials and Energy. 9. 10.1016/j.nme.2016.02.006
- melastic Scatter cross sections need to be improved for fast neutron transport calculations
- Secondary particle production is not well known and requires measurement and theory development



## For Materials Damage let's look WAY BACK to WANDA 2019: Materials Damage Session Findings/Recommendations (C. Romano)

- •There should there be a coordinated and comprehensive materials damage database for validation of calculations
- Idaho National Laboratory has a database of irradiation materials available to borrow
  - · Includes irradiation data but no post irradiation testing data
- Improved dosimetry standards will be necessary for 14 MeV neutrons
- Post Irradiation Testing
  - There are several capable laboratories with full suite of testing
  - Impossible to measure sigma-dpa due to annealing: Can look at crystallings. Hundle, hundled angeling annealing: Can look at crystallings.
- Need to standardize materials analysis methods and format for irradiated materials data



# Differential $\sigma_{DPA}$ and gas production measurements using a microcalorimeter coupled to a DT-API neutron generator

 Radiation is deposited in an absorber material and read out through a thermal resistance at low temperature.

 Source can be the absorber or embedded in it.

| Radiation Threshold |         |  |
|---------------------|---------|--|
| Silicon             | 3.6 eV  |  |
| Germanium           | 2.9 eV  |  |
| μCal                | ≈30 µeV |  |



Energy [keV]



See Keegan Kelly's talk from yesterday



WANDA 2025 20

# Differential $\sigma_{DPA}$ and gas production measurements using a microcalorimeter coupled to a DT-API neutron generator



### **Simple Count Rate Estimate**

$$R_{\alpha-\gamma/n} = \sigma(N)_{sample} \Phi_n$$

For a 1  $\mu$ m thick sample ( $N_{sample} \approx 10^{20} atoms$ ) @ 10 cm:

$$\Phi_n \approx 10^8 \, n/_S \times 1/_{10}^2 \longrightarrow \Phi_n \approx 10^{11} \, n/_{day}$$
$$\longrightarrow R_{\alpha-\gamma/n} = 10^7 / \sigma \, (barn) \cdot day$$



#### Energy deposited in <sup>56</sup>Fe by a 14.1 MeV neutron

| (n,el) or (n,inl)                  | ≤ 247 keV  | $\sigma_{14}^{max} \approx 0.6 b$    |
|------------------------------------|------------|--------------------------------------|
| (n,p) (Q=-3.0  MeV)                | ≤11,38 keV | $\sigma_{14}^{max} \approx 0.1 b$    |
| $(n,\alpha) (Q=+0.32 \text{ MeV})$ | ≤14.7 MeV  | $\sigma_{14}^{max} \approx 0.1 \ mb$ |
| (n,pn) (Q=-10.2 MeV)               | ≤ 4.2 MeV  | $\sigma_{14}^{max} \approx 0.1 \ b$  |

All major parts of  $\sigma_{DPA}$  are resolvable



22

## How about integral measurements using high-flux neutron beams from thick target deuteron breakup (IFMIF etc.)?

### Future Facilities (IFMIF<sup>1/</sup>FPNS)



IFMIF/FPNS plan to achieve multi-DPA damage in 100+ cm<sup>3</sup> volumes using thick target deuteron breakup

Cost:  $\approx $10^{8-9}$  + years to design & build

#### **Current Facilities**



The same spectrum is neutron single-event e radioisotope productio % of the flux in  $\approx 1$  cm

Countney Matzkind (MDA) this past Friday at the 88-Inch



Integral tests can be performed now, but they are <u>NOT</u> a substitute for differential data



### Conclusions

- Many nuclear data needs for fusion energy overlap with other programs, allowing them to benefit from work being done by DOE/NP, the NNSA, DOE-NE, BUT numerous gaps exist
  - Differential data is lacking for tritium breeding, materials damage and gamma-ray production
- The combination of DT neutron generators with Associated Particle Imaging and Microcalorimetry offers a chance to address nuclear data gaps relevant to fusion:
- Opportunities exist for fusion energy to partner with other nuclear data users to accelerate progress and mitigate risk.

Thanks for your attention!



WANDA 2025 24