FRIB Nb₃Sn ECR ion source magnet: Schedule, Cost, and Progress monthly report

Tengming Shen for the Supercon team Lawrence Berkeley National Laboratory July 2024 report

2024/07/15

- FRIB: Yoonhyuck Choi, Junwei Guo, Xiaoji Du, Dalu Zhang, Ting Xu, Machicoane, Guillaume, Maruta, Tomofumi, Jie Wei
- LBNL: Tengming Shen, Ye Yang, Philip Mallon, Ray Hafalia, Lianrong Xi, Mariusz Juchno, Paolo Ferracin, Soren Prestemon

The Indico site where the meeting slides can be downloaded: https://conferences.lbl.gov/event/1822/

Access key: FRIB

Past meetings slides are available at https://conferences.lbl.gov/category/109/

Dien ERGY Sterre

- Heat treatment of the 3.x layer practice coil has been completed.
- Impregnation tooling sent for fabrication. Estimated to arrive in the first week of August.
- \circ 3D mechanical analysis completed.

Next steps: (1) Post reaction
 observation, (2) coil transfer to
 impregnation mold, (3) impregnation,
 (4) Cut-out observation.

The reacted coil in its tooling (mostly SS304)

A set of slides: <u>https://docs.google.com/presentation/d/1FAAv_QD34foHT8lbBg2dZMK8RNcD6AAVxWchCaYS1-4/edit#slide=id.p</u> (Design: Lianrong Xu, Ray Hafalia)

The reacted coil in the impregnation tooling (mostly Aluminum)

• Prototype coil pole island and tips have been fabricated, plasma spray coated. We are ready to go.

Risk: Winding partially filled layers and handling after reaction

Prototype coil fabrication – risk assessment

Full procedure available at: https://docs.google.com/presentation/d/1FAAv_QD34foHT8lbBg2dZMK8RNcD6AAVxWchCaYS1-4/edit#slide=id.p

(Design: Lianrong Xu, Ray Hafalia)

FRIB

- Coil transfer into the impregnation tooling is a tricky step.
- Coils #4/#5/#6 had various issues, including turn-to-turn shorts, cross-over, and long training.

Alternative designs for the FRIB-II Nb₃Sn magnet

Ye Yang, Tengming Shen, Lianrong Xu

- Ver A, Jun.7.2024
- Ver B, Jun.25.2024

Options

Field distribution

Bmax = 5.35T

Bmax = 5.56T

Bmax = 5.56T

O FINIERGY Solence

Radial field at R76 mm

By: 1.89 T

By: 2.23 T

By: 1.97 T

Transfer function of case A

Radial field changes linearly even using the iron

CO FERRER SOY Solorco

Result

Item	Unit	Value		
Bare dimension	mm ²	2.35x1.25		
Insulated dimension	mm ²	2.60x1.55		
Design	-	А	В	Base
Layers	-	21	25	-
Turns per layer	-	14	14	-
Turns	-	294	350	317
Current	А		924	
Max. field	Т	5.35	5.56	5.34
Br at 76mm	Т	1.89	2.23	1.97

3D model with iron poles

Minimum field at plasma chamber

Rref: 71.85 mm

Back to the cross-section of the new design

Comparison

ltem	Unit	New design	Original design
Turns	-	350	317
Current	А	924	924
Bmax on winding	т	6.85	6.56
B at Rref	т	2.06	1.88

The new design winding trial with Nb-Ti ECR sextupole strands

Lawrence Berkeley National Laboratory

- Lawrence Berkeley National Laboratory
 - $\circ~$ We are ready to wind the prototype coil with the nominal design.
 - The new design is quite interesting in reducing risks with coil fab for both Nb-Ti and in particularly Nb₃Sn.
 - Switching to the new design will need to produce new poles and have a small impact on cost but a bigger impact on schedule (about 6 weeks).
 - There might be hidden (unknown unknown) risks.
 - We would like to ask you to allow us to perform winding evaluation and 3-D mechanical analysis and then decide on whether to switch to the new design.
 - Proceeding to the new design with Nb₃Sn winding and coil transfer (from winding table into the reaction mold and from the reaction mold to the impregnation model) establishes a coil fabrication experience reference for Nb-Ti as well.

Supporting slides

Magnetic force

Item		Unit	Original	Alternative
sext1/straight	Fx	kN	98.8	151.3
	Fy	kN	-296.5	-459.4
	Fz	kN	0.1	0.0
sext1/end1 (extr side)	Fx	kN	25.2	29.6
	Fy	kN	-6.5	-5.4
	Fz	kN	9.8	12.5
sext1/end2 (inj side)	Fx	kN	-6.6	-9.3
	Fy	kN	-40.5	-41.4
	Fz	kN	-26.9	-33.2
sext2/straight	Fx	kN	105.0	128.4
	Fy	kN	321.1	307.3
	Fz	kN	0.1	0.0
sext2/end1 (extr side)	Fx	kN	-7.6	-10.7
	Fy	kN	36.7	37.8
	Fz	kN	25.0	30.7
sext2/end2 (inj side)	Fx	kN	25.1	28.4
	Fy	kN	2.6	2.3
	Fz	kN	-7.8	-10.4

Building the coil

- Needs the coordinate to generate conductor in OPERA
- P1 is a point intersected with circle

$$\begin{cases} x^2 + y^2 = r^2 \\ y = kx + b \end{cases}$$

$$(1+k^2)x^2 + 2kbx + b^2 - r^2 = 0$$

$$x = \frac{-2kb + \sqrt{4k^2b^2 - 4(1+k^2)(b^2 - r^2)}}{2(1+k^2)}$$

• The angle at each intersected point:

$$\theta = \cos^{-1}\left\{\frac{-2kb + \sqrt{4k^2b^2 - 4(1+k^2)(b^2 - r^2)}}{2(1+k^2)r}\right\}$$

 $k = \tan \alpha$

CO FEINTERRIGY Science

Building the coil end

Parametric curve for the coil end:

Coordinate at the corner for the end section:

• P1:
$$\begin{cases} r = r_0 \\ z = z_0 + z_e \sin t \end{cases}$$
• P2:
$$\begin{cases} r = r_0 \\ z = z_0 + (z_e + \delta) \sin t \end{cases}$$
• P3:
$$\begin{cases} r = r_1 \\ z = z_0 + \{z_e + \delta - (r_2 - r_1) \cot \beta_2\} \sin t \end{cases}$$
• P4:
$$\begin{cases} r = r_1 \\ z = z_0 + \{z_e - (r_2 - r_1) \cot \beta_1\} \sin t \end{cases}$$

Single sextupole coil

CO ENERGY Solence

Current density of the coil block

Some Stranger

Shape function

Figure 5.8 A 20-Node Brick

Node 1, (1, 1, 1),
$$\frac{1}{8}(1+\xi)(1+\eta)(1+\zeta)(-2+\xi+\eta+\zeta)$$

Node 2, (1, -1, 1), $\frac{1}{8}(1+\xi)(1-\eta)(1+\zeta)(-2+\xi-\eta+\zeta)$
Node 3, (-1, -1, 1), $\frac{1}{8}(1-\xi)(1-\eta)(1+\zeta)(-2-\xi-\eta+\zeta)$
Node 4, (-1, 1, 1), $\frac{1}{8}(1-\xi)(1+\eta)(1+\zeta)(-2-\xi+\eta+\zeta)$
Node 5, (1, 1, -1), $\frac{1}{8}(1+\xi)(1+\eta)(1-\zeta)(-2+\xi+\eta-\zeta)$
Node 6, (1, -1, -1), $\frac{1}{8}(1+\xi)(1-\eta)(1-\zeta)(-2+\xi-\eta-\zeta)$
Node 7, (-1, -1, -1), $\frac{1}{8}(1-\xi)(1-\eta)(1-\zeta)(-2-\xi-\eta-\zeta)$
Node 8, (-1, 1, -1), $\frac{1}{8}(1-\xi)(1+\eta)(1-\zeta)(-2-\xi+\eta-\zeta)$

Node 9, (1, 0, 1),
$$\frac{1}{4}(1 + \xi)(1 - \eta^2)(1 + \zeta)$$

Node 10, (0, -1, 1), $\frac{1}{4}(1 - \xi^2)(1 - \eta)(1 + \zeta)$
Node 11, (-1, 0, 1), $\frac{1}{4}(1 - \xi)(1 - \eta^2)(1 + \zeta)$
Node 12, (0, 1, 1), $\frac{1}{4}(1 - \xi^2)(1 + \eta)(1 + \zeta)$
Node 13, (1, 1, 0), $\frac{1}{4}(1 + \xi)(1 + \eta)(1 - \zeta^2)$
Node 14, (1, -1, 0), $\frac{1}{4}(1 + \xi)(1 - \eta)(1 - \zeta^2)$
Node 15, (-1, -1, 0), $\frac{1}{4}(1 - \xi)(1 - \eta)(1 - \zeta^2)$
Node 16, (-1, 1, 0), $\frac{1}{4}(1 - \xi)(1 + \eta)(1 - \zeta^2)$
Node 17, (1, 0, -1), $\frac{1}{4}(1 - \xi)(1 - \eta^2)(1 - \zeta)$
Node 18, (0, -1, -1), $\frac{1}{4}(1 - \xi^2)(1 - \eta)(1 - \zeta)$
Node 19, (-1, 0, -1), $\frac{1}{4}(1 - \xi^2)(1 - \eta)(1 - \zeta)$
Node 20, (0, 1, -1), $\frac{1}{4}(1 - \xi^2)(1 + \eta)(1 - \zeta)$

Derivative of the shape function

$$\begin{split} \frac{\partial N_1}{\partial \xi} &= \frac{1}{8} (1+\eta)(1+\zeta)(-1+2\xi+\eta+\zeta) \\ \frac{\partial N_2}{\partial \xi} &= \frac{1}{8} (1-\eta)(1+\zeta)(-1+2\xi-\eta+\zeta) \\ \frac{\partial N_3}{\partial \xi} &= -\frac{1}{8} (1-\eta)(1+\zeta)(-1-2\xi-\eta+\zeta) \\ \frac{\partial N_4}{\partial \xi} &= -\frac{1}{8} (1+\eta)(1+\zeta)(-1-2\xi+\eta+\zeta) \\ \frac{\partial N_5}{\partial \xi} &= \frac{1}{8} (1+\eta)(1-\zeta)(-1+2\xi+\eta-\zeta) \\ \frac{\partial N_6}{\partial \xi} &= \frac{1}{8} (1-\eta)(1-\zeta)(-1+2\xi-\eta-\zeta) \\ \frac{\partial N_7}{\partial \xi} &= -\frac{1}{8} (1-\eta)(1-\zeta)(-1-2\xi-\eta-\zeta) \\ \frac{\partial N_8}{\partial \xi} &= -\frac{1}{8} (1+\eta)(1-\zeta)(-1-2\xi+\eta-\zeta) \\ \frac{\partial N_9}{\partial \xi} &= \frac{1}{4} (1-\eta^2)(1+\zeta) \end{split}$$

$$\begin{split} \frac{\partial N_1}{\partial \eta} &= \frac{1}{8} (1+\xi)(1+\zeta)(-1+\xi+2\eta+\zeta) \\ \frac{\partial N_2}{\partial \eta} &= -\frac{1}{8} (1+\xi)(1+\zeta)(-1+\xi-2\eta+\zeta) \\ \frac{\partial N_3}{\partial \eta} &= -\frac{1}{8} (1-\xi)(1+\zeta)(-1-\xi-2\eta+\zeta) \\ \frac{\partial N_4}{\partial \eta} &= \frac{1}{8} (1-\xi)(1+\zeta)(-1-\xi+2\eta+\zeta) \\ \frac{\partial N_5}{\partial \eta} &= \frac{1}{8} (1+\xi)(1-\zeta)(-1+\xi+2\eta-\zeta) \\ \frac{\partial N_6}{\partial \eta} &= -\frac{1}{8} (1+\xi)(1-\zeta)(-1+\xi-2\eta-\zeta) \\ \frac{\partial N_7}{\partial \eta} &= -\frac{1}{8} (1-\xi)(1-\zeta)(-1-\xi+2\eta-\zeta) \\ \frac{\partial N_8}{\partial \eta} &= \frac{1}{8} (1-\xi)(1-\zeta)(-1-\xi+2\eta-\zeta) \\ \frac{\partial N_9}{\partial \eta} &= -\frac{1}{2} \eta (1+\xi)(1+\zeta) \end{split}$$

$$\begin{split} \frac{\partial N_1}{\partial \zeta} &= \frac{1}{8} (1+\xi)(1+\eta)(-1+\xi+\eta+2\zeta) \\ \frac{\partial N_2}{\partial \zeta} &= \frac{1}{8} (1+\xi)(1-\eta)(-1+\xi-\eta+2\zeta) \\ \frac{\partial N_3}{\partial \zeta} &= \frac{1}{8} (1-\xi)(1-\eta)(-1-\xi-\eta+2\zeta) \\ \frac{\partial N_4}{\partial \zeta} &= \frac{1}{8} (1-\xi)(1+\eta)(-1-\xi+\eta+2\zeta) \\ \frac{\partial N_5}{\partial \zeta} &= -\frac{1}{8} (1+\xi)(1+\eta)(-1+\xi+\eta-2\zeta) \\ \frac{\partial N_6}{\partial \zeta} &= -\frac{1}{8} (1+\xi)(1-\eta)(-1+\xi-\eta-2\zeta) \\ \frac{\partial N_7}{\partial \zeta} &= -\frac{1}{8} (1-\xi)(1-\eta)(-1-\xi-\eta-2\zeta) \\ \frac{\partial N_8}{\partial \zeta} &= -\frac{1}{8} (1-\xi)(1+\eta)(-1-\xi+\eta-2\zeta) \\ \frac{\partial N_9}{\partial \zeta} &= \frac{1}{4} (1+\xi)(1-\eta^2) \end{split}$$

Derivative of the shape function

 $\frac{\partial N_{10}}{\partial \xi} = -\frac{1}{2}\xi(1-\eta)(1+\zeta)$ $\frac{\partial N_{11}}{\partial \xi} = -\frac{1}{4}(1-\eta^2)(1+\zeta)$ $\frac{\partial N_{12}}{\partial \xi} = -\frac{1}{2}\xi(1+\eta)(1+\zeta)$ $\frac{\partial N_{13}}{\partial \xi} = \frac{1}{4}(1+\eta)(1-\zeta^2)$ $\frac{\partial N_{14}}{\partial \xi} = \frac{1}{4}(1-\eta)(1-\zeta^2)$ $\frac{\partial N_{15}}{\partial \xi} = -\frac{1}{4}(1-\eta)(1-\zeta^2)$ $\frac{\partial N_{16}}{\partial \xi} = -\frac{1}{4}(1+\eta)(1-\zeta^2)$ $\frac{\partial N_{17}}{\partial \xi} = \frac{1}{4}(1-\eta^2)(1-\zeta)$ $\frac{\partial N_{18}}{\partial \xi} = -\frac{1}{2}\xi(1-\eta)(1-\zeta)$ $\frac{\partial N_{19}}{\partial \epsilon} = -\frac{1}{4}(1-\eta^2)(1-\zeta)$

$$\begin{aligned} \frac{\partial N_{10}}{\partial \eta} &= -\frac{1}{4}(1-\xi^2)(1+\zeta) & \frac{\partial N_{11}}{\partial \eta} \\ \frac{\partial N_{11}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1+\zeta) & \frac{\partial N_{12}}{\partial \eta} \\ \frac{\partial N_{12}}{\partial \eta} &= \frac{1}{4}(1-\xi^2)(1+\zeta) & \frac{\partial N_{13}}{\partial \eta} \\ \frac{\partial N_{13}}{\partial \eta} &= -\frac{1}{4}(1+\xi)(1-\zeta^2) & \frac{\partial N_{15}}{\partial \eta} \\ \frac{\partial N_{15}}{\partial \eta} &= -\frac{1}{4}(1-\xi)(1-\zeta^2) & \frac{\partial N_{16}}{\partial \eta} \\ \frac{\partial N_{16}}{\partial \eta} &= \frac{1}{4}(1-\xi)(1-\zeta^2) & \frac{\partial N_{18}}{\partial \eta} \\ \frac{\partial N_{18}}{\partial \eta} &= -\frac{1}{2}\eta(1+\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} &= -\frac{1}{2}\eta(1-\xi)(1-\zeta) & \frac{\partial N_{19}}{\partial \eta} \\ \frac{\partial N_{19}}{\partial \eta} \\$$

$$\begin{aligned} \frac{\partial N_{10}}{\partial \zeta} &= \frac{1}{4} (1 - \xi^2) (1 - \eta) \\ \frac{\partial N_{11}}{\partial \zeta} &= \frac{1}{4} (1 - \xi) (1 - \eta^2) \\ \frac{\partial N_{12}}{\partial \zeta} &= \frac{1}{4} (1 - \xi^2) (1 + \eta) \\ \frac{\partial N_{13}}{\partial \zeta} &= -\frac{1}{2} (1 + \xi) (1 + \eta) \zeta \\ \frac{\partial N_{14}}{\partial \zeta} &= -\frac{1}{2} (1 + \xi) (1 - \eta) \zeta \\ \frac{\partial N_{15}}{\partial \zeta} &= -\frac{1}{2} (1 - \xi) (1 - \eta) \zeta \\ \frac{\partial N_{16}}{\partial \zeta} &= -\frac{1}{2} (1 - \xi) (1 + \eta) \zeta \\ \frac{\partial N_{17}}{\partial \zeta} &= -\frac{1}{4} (1 + \xi) (1 - \eta^2) \\ \frac{\partial N_{18}}{\partial \zeta} &= -\frac{1}{4} (1 - \xi^2) (1 - \eta) \zeta \end{aligned}$$

$$\begin{split} \frac{\partial N_{20}}{\partial \xi} &= -\frac{1}{2}\xi(1+\eta)(1-\zeta)\\ \frac{\partial N_{20}}{\partial \eta} &= \frac{1}{4}(1-\xi^2)(1-\zeta)\\ \frac{\partial N_{20}}{\partial \zeta} &= -\frac{1}{4}(1-\xi^2)(1+\eta) \end{split}$$

Comparison of the field on winding

	A [m^2]	J [A/m^2]
1	1.501709e-03	2.153546e+08
2	1.503282e-03	2.151292e+08
3	1.505521e-03	2.148093e+08
4	1.507202e-03	2.145697e+08
5	1.507606e-03	2.145123e+08
6	1.506979e-03	2.146015e+08
7	1.506260e-03	2.147040e+08
8	1.506260e-03	2.147040e+08
onduc19.vii	1:506979e+03	olt2:146015e+08:0
10	1.507606e-03	2.145123e+08
11	1.507202e-03	2.145697e+08
12	1.505521e-03	2.148093e+08
13	1.503282e-03	2.151292e+08
14	1.501709e-03	2.153546e+08
15	1.510577e-03	2.140904e+08

- Peak field without iron pole:
 - Original design: 4.64 T
 - Case B: 5.14 T