Vector mesons and more at an EIC

Spencer Klein & Ya-Ping Xie

NSD Tuesday Meeting, Jan. 8, 2019

- Motivation:
 - Partons and nuclear shadowing
 - Nuclear imaging with vector mesons
- Vector mesons at an EIC
- The eSTARlight Monte Carlo
- Vector meson rates and kinematics
- Beyond vector mesons: the a₂⁺(1320) and Z_c⁺

Parton distributions

- The quarks and gluons abundances in a nucleon at a given momentum fraction are the parton distributions
 - ♦ u(x,Q²), d(x,Q²), g(x,Q²), etc.
 - x is momentum fraction in infinite momentum frame
 - Q² is photon virtuality (effective mass)
 - 1/photon (dipole) size
- 3 valence quarks + gluons + sea quarks
 - Gluons split into quarks, etc.
- Mostly measured in deep inelastic scattering
- g(x,Q²) increases with decreasing x
 - Valence quarks follow
 - $xg(x,Q^2) \sim x^{-\lambda} \sim power law$
- At sufficiently small x, the gluon density should reach a limit-> 'saturation'

Nuclear shadowing

- When a proton or neutron is inserted into a nucleus, the parton distributions may change
 - Quark/gluon exchange
 - Multiple scattering

- Higher parton densities -> gluon fusion, etc.
 - expected at higher x values than in isolated protons
 - Scaling arguments give x_s~ A ^{1/3}
- Data shows complex behavior, with multiple regions
- Current nuclear-target data (mostly) at large x
 - An EIC can map out parton densities in a wide range of x, Q² in diverse nuclei

Vector meson photoproduction

- Vector Meson photoproduction occurs via Pomeron (two-gluon) exchange
- To lowest order, σ(VM) ~ |xg(x)|²
 - Square of gluon density
 - But, gluons are not 'bare'
 - Corrections for skewing, NLO, etc.
 - Ongoing work....
 - If $xg(x,Q^2) \sim x^{-\lambda} \rightarrow \sigma(k) \sim W^{4\lambda} \sim W^{0.7}$
 - Lowest order only!
 - + Pure power law, exponent ~ good for J/ψ
- By comparing yp->Vp and yA->VA, we can measure shadowing
 - J/ψ & heavier probe pQCD
 - $Q^2 = M_V^2 + Q_\gamma^2$
 - Need an EIC to scan over Q²
 - High photon energy -> low x

LHC data shows moderate shadowing

- x ~few 10⁻⁶ with proton targets (LHCb)
 - Evidence for NLO terms?
- $x \sim 10^{-3}$ to 10^{-1} for lead targets
- Moderate shadowing
 - Consistent with 'leading twist' approach
 - Shadowing from multiple scattering
 - At some x, expect 'saturation'

 J/ψ photoproduction on protons

Imaging with vector mesons

- Photoproduction carries information about the actual positions of the interaction sites in the target
- $\sigma = |\Sigma_i A_i e(^{ikx})|^2$
 - A_i is interactions strength
 - x_i is interaction position
 - k is momentum transfer from target
- Coherence for k<hbar/R_A
- d\u03c6_{coherent}/dt encodes position of interaction sites in target
 - ♦ t=p_T²
- Expect most shadowing in nuclear interior, less at edges

STAR, Phys. Rev. C96, 054904 (2017)

Vector mesons at an EIC

- UPC mostly probe fixed Q²=M_v²
 - Exception: Vary M_{ππ} in UPCs, but only M_{ππ} < 1 GeV
 - An Electron-Ion Collider can vary Q² independently
 - Outgoing electron tags Q² independent of rest of reaction
 - Photon virtuality $Q^2 = (p_e p_e')^2$
 - Independent of:
 - k = Photon energy
 - W = gamma Pomeron center of mass energy
 - Vector meson mass
- An EIC can also vary A, collide polarized electrons and light ions

Q² evolution of shadowing

- Oipole size> scales with 1/Q²
- Shadowing disappears with increasing Q²/smaller dipoles
- Probe ratio of lead:iron cross-section ratio, scaled by A -4/3
- Large dipole (ρ⁰, black) shows very large shadowing
 - Breakdown of 'independent nucleon' picture
- Small dipole (J/ψ, red) shows less shadowing

eSTARlight, qualitatively similar to Mantysaari & Venugopalan, Phys. Lett. B781, 664 (2018).

Proposed EICs

- eRHIC at Brookhaven
 - Adds an electron ring to RHIC
- MEIC at Jefferson Lab
 - Uses existing accelerator as injector
- LHeC at CERN
 - Adds an electron linac/ring to the LHC
- EICC, in China
 - Focus on valence quarks

Plot & graphic from Xurong Chen, IMP, Lanzhou

The eSTARlight Monte Carlo

- Collides electrons with ions (of any A,Z) at arbitrary energy
- Diverse final states: ρ, ω, φ, ρ', J/ψ, ψ', Y(1S), Y(2S), Y(3S)
 - Simple (two-prong) decays correctly account for photon polarization
 - Real photons are transversely polarized
 - Virtual photons can be longitudinally polarized
 - Fraction scales with increasing Q²
 - Complex decays via Pythia 8
 - Based on parameterized HERA data
 - Judicious extrapolations/analogies needed.

Accelerator	AB	e/p Energy	p Energy	integrated luminosity		
eRHIC [22]	ep	$18 { m ~GeV}$	$275~{\rm GeV}$	$10 \ {\rm fb}^{-1}$		
JLEIC[23]	ep	$10~{\rm GeV}$	$100~{\rm GeV}$	$10 {\rm ~fb}^{-1}$		
LHeC[5]	ep	$60~{\rm GeV}$	$7000~{\rm GeV}$	$10 {\rm ~fb^{-1}}$		
EicC [25]	ep	$3.5~{\rm GeV}$	$20~{\rm GeV}$	$10 {\rm ~fb^{-1}}$		
$\operatorname{RHIC}[26]$	pAu	$100~{\rm GeV}$	$100~{\rm GeV}$	$4.5~{\rm pb}^{-1}$		
LHC	pPb	$7000~{\rm GeV}$	$2778~{\rm GeV}$	2 pb^{-1}		

Framework for production of vector mesons in ep scattering

In ep scattering, we calculate the vector meson cross section:

$$\sigma(ep \rightarrow |epV) = \int \frac{dk}{k} \int dQ^2 \frac{dN_{\gamma}}{dkdQ^2}(k, Q^2) \sigma_{\gamma^*p \rightarrow Vp}(W, Q^2).$$

The cross section of photon-proton interaction is

STARlight refactorizes this, and uses lookup tables and rejection sampling to generate events from these distributions

Mechanisms for photoproduction of vector mesons

- In light vector meson photoproduction,
 Pomeron exchange and Reggeon exchange both contribute to the total cross section.
 - In pQCD, Pomeron is a gluon ladder
 - Reggeon represents meson exchange
 - Summed over multiple mesons
 - High quark content
 - Near threshold, the Reggeon exchange contributions are dominant.
- For heavy quarkonium (including the φ), only the Pomeron contributes to the total cross section
 - No c, few s quarks in nucleon

Cross sections for vector meson photoproduction

- The cross-section for γp >Vp has a simple form:
 - Light vector mesons:
 σ(W)=XW1∈ +YW1−η
 - Heavy vector mesons:
 σ(W)=XW1∈
 - X term is from Pomeron exchange
 - Y term is from Reggeon exchange
 - Only for light mesons
 - ε increases with increasing meson mass

eSTARlight compared with HERA data

- We use eSTARlight to calculate the total cross section as a function of *Q1*2 and W.
- It shows good agreement with HERA data

eSTARlight

ZEUS

Η1

100

σ(γ* + *p*--→*ρ* + X) (nanobarn)

104

10³

10²

10¹

10⁰

σ (γρ->ρρ)

Michael Lomnitz and SK, arXiv:1803.06420, to appear in Phys. Rev. C

 10^{1}

 $O^2 + M^2$

ρ and J/ ψ cross section in ep scattering

- We use eSTARlight to find dσ/dy at proposed EICs
 - do/dy distribution is very broad
 - ρ⁰ two peaks correspond to Reggeon exchange (near threshold)
 and Pomeron exchange
 - J/ψ single peak due to Pomeron exchange
- Need a wide acceptance detector to study full energy range

Detector acceptance

- Vector meson acceptance depends on the chargedparticle pseudorapidity coverage of the detector.
 - In ρ->π⁺π⁻, J/ψ->e⁺e⁻, the final state π/e particle pseudorapidity (η) is correlated with the vector meson rapidity (y)
 - The plots show vector meson efficiency for 3 toy detectors, with charged particles detection over |η|<1, |η|<2 and |η|<3
- A wide-acceptance detector is needed

$d\sigma/dy$ vs. photon energy and Bjorken-x

- Photon energy increases, and Bjorken-x values decrease with increasing rapidity. $k=M/2 \exp(y)$ and $x=M/\sqrt{s} \exp(-y)$
- The most 'interesting' collisions are those with the highest photon energy/lowest Bjorken-x. These occur at large rapidity.
- Low photon energies occur at negative rapidity.
 - Key to understanding threshold effects and Reggeon exchange
 - J/ ψ production via 3-gluon exchange may occur near threshold
- Detector should have good forward and backward acceptance, including particle identification

Q[†]**2** -dependent cross section of vector mesons in ep scattering

- We also investigate the contribution of *Q1*2 of photon to the production of vector mesons in ep scattering
 - As Q² increases, threshold shifts slightly toward larger rapidity

Mechanics for photoproduction of charged particles

Reggeons can be charged or neutral

- Trajectories of charged mesons, like π^+
- Wider range of spin/parity states than the Pomeron
- Greatly extends the range of particles that can be studied with photoproduction
 - Both standard qq mesons and exotica
- Example: The a₂⁺ is a 'standard candle' ud meson: γp->a₂(1320)⁺ n
 - Large branching ratio to $\pi^+\pi^-\pi^+$
 - Easy to reconstruct
 - Limited Q²=0 data from fixed-target experiments
 - Then look at more exotic objects
 - Photoproduction cross-section depends on their nature: tetraquark, mesonic molecule or ???
 IJMPA(30)1530002, PRD(77)094005

The Z_c⁺(4430)

- Observed in Belle in $B \rightarrow K \psi \uparrow' \pi$
- Decays to J/ψπ⁺, ψ' π⁺
- Contains cc and is charged, so cannot be a quark-antiquark meson. Nature is unknown
 - tetraquark (cc ud or cc u d)?
 - Mesonic molecule (2 loosely bound mesons)?
 - Hadro-charmonium?
- These three hypotheses should lead to different photoproduction cross-sections
 - Today: focus on published tetraquark model cross-section
 - Similar arguments apply for the Z_c⁺(3900)
 - Lighter -> higher photoproduction rates

Cross section of charged particles in photoproduction process

- Use data or calculations of σ(γp->X+n) as input to eSTARlight to predict dσ/dy for the same process in EIC collisions.
 - > Assume the same Q^2 scaling as similar vector mesons.

PRD(93)074016 & PRC(83)065203

$a/2\hat{t}+(1320)$ and $Z/c\hat{t}+(4430)$ production in ep scattering for proposed

- We compute rapidity distributions of al21+ (1320) in ep scattering in proposed EICs. The electron is moving in the positive y direction.
- The al21+ (1320) is mainly in the negative rapidity region, and there is a large rate in EICs. It is easy to measure al21+ (1320) in EicC at small rapidity regions

$Z \downarrow c \uparrow + (4430) \text{ and } a \downarrow 2 \uparrow + (1320)$ production in pA UPCs at RHIC and I HC

- Ultra-peripheral collisions means that two nuclear collide with each other in a large impact parameter.
 - Strong interaction is suppressed
 - > Electromagnetic interactions.
- We also compute the two charged particles production in pA UPCs. The cross-section is:

$$\sigma(pA \to nAM) = \int dk \frac{dN_{\gamma}(k)}{dk} \sigma_{\gamma p \to nM}(W)$$

The photon flux from protons is much smaller that photon flux from heavy ions. The γ-p crosssection is dominant in p-A UPCs.

Expected event rate for vector mesons, a2+(1320) and ZC+

- Total cross sections and expected events for vector mesons and two charged particles on EICs, RHIC and LHC
 - For ~ 1 year (for HLLHC all of Run period 3 & 4)

	Events ($0 < Q^2 < 1.0 GeV^2$)				Events $(Q^2 > 1.0 GeV^2)$				
	ρ	ϕ	J/ψ	ψ'	ρ	ϕ	J/ψ	ψ'	
eRHIC -ep	$50~{ m giga}$	$2.3 { m ~giga}$	85 mega	14 mega	140 mega	$17 \mathrm{mega}$	5.7 mega	1.2 mega	
eRHIC - eA	44 giga	2.8 mega	100 mega	16 mega	$37 \mathrm{mega}$	5.6 mega	3.9 mega	$960 \mathrm{kilo}$	
JLEIC -ep	$37 \mathrm{~giga}$	1.6 giga	39 mega	6.0 mega	$100.0~{\rm mega}$	12.0 mega	$2.7 \mathrm{mega}$	550 kilo	
JLEIC -eA	$28 \mathrm{giga}$	$1.6 {\rm ~giga}$	28 mega	$3.9 \mathrm{mega}$	22 mega	3.2 mega	1.2 mega	250 kilo	
LheC -ep	$100 {\rm ~giga}$	$5.6~{ m giga}$	470 mega	78 mega	$260~{\rm mega}$	$37 \mathrm{mega}$	29 mega	6.3 mega	
LHeC -eA	110 giga	$8.2~{ m giga}$	720 mega	140 mega	100 mega	16 mega	27 mega	7.2 mega	

	Events ($0 < Q^2 < 1.0 GeV^2$)				Events $(1.0 \text{GeV}^2 < \text{Q}^2 < 5.0 \text{GeV}^2)$				Events ($Q^2 = 0.0$)	
	eRHIC	JLEIC	LHeC	EicC	\mathbf{eRHIC}	JLEIC	LHeC	EicC	RHIC	LHC
$a_2^+(1320)$	$0.79 \mathrm{giga}$	$0.69 \mathrm{giga}$	1.06 giga	$0.47~{ m giga}$	5.1 mega	5.0 mega	5.2 mega	4.0 mega	$0.78 \mathrm{giga}$	1.12 giga
$Z_{c}^{+}(4430)$	2.6 mega	$2.2 \mathrm{mega}$	3.6 mega	$0.94~\mathrm{mega}$	0.12 mega	$0.12 \mathrm{mega}$	0.12 mega	68.0 kilo	1.4 mega	3 .52 mega

Conclusions

- Vector meson photoproduction is an attractive way to image the partons in the nucleus.
 - Data from ultra-peripheral collisions points to moderate shadowing in heavy ions for 10⁻³ < x < 10⁻² & moderate Q²
- An electron-ion collider will allow precise measurements of shadowing as a function of Q²
 - High rates for ρ , ρ' , J/ ψ , ψ' ; moderate rates for the Y(1S)
- The eSTARlight Monte Carlo can simulate the production of different vector mesons in ep and eA collisions.
- To reach the lowest possible Bjorken-x requires a forward detector.
- ep and pA UPCs also produce charged mesons, via charged Reggeon exchange. The a₂⁺(1320) is a 'standard candle'.
 - This is a way to determine the nature of exotic mesons like the Z_c⁺