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Radiation mapping overall goals
Where is the radiation and how bad is it? I.e., what is the radiation distribution in the scene?
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LiDAR + rad measurements    →       Scene representation         →       Rad image reconstruction  



Radiation mapping systems and applications

3Vavrek et al. (2020)

Pavlovsky et al. (2019b)

Handheld / UAS-borne detector systems

Anisotropic angular efficiency function

Contamination mapping / decontamination verification

Chornobyl claw, Vetter et al. (2019)



Rad image reconstruction
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• Find the estimates of 𝑤	and 𝑏	by minimizing the negative log likelihood

• Iterative reconstruction algorithm: e.g, Maximum Likelihood Expectation-Maximization 
(MLEM)

𝜆 = 𝑉 $ 𝑤 + 𝑏	𝑡

𝑤: radiation intensity
𝑉: system matrix
𝑏: background count rate
𝑡: measurement time
𝜆: mean counts

• Measured counts x ~ Poisson(𝜆) 
• Negative log likelihood



Rad image reconstruction
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Benefits of lower computation cost: 
• acceleration of data processing to enable real-time or near 

real-time reconstruction of high-fidelity results
• reduction of computer memory usage so compact computer 

can be used on smaller, portable edge systems
○ (can’t put an NVIDIA 4090 GPU on every system!)

• reduction of battery usage which allows more system 
operation time 

After low-fidelity reconstruction, perform image 
upscaling to generate the high-fidelity map 

Image upscaling by machine learning algorithms with 
significantly less computation

Note: Only 2D map is considered



Image upscaling / Super Resolution (SR) algorithms
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Image SR 
algorithms

Parametric algorithms (learn a fixed set of parameters from training data)
• Convolutional Neural Networks

 Non-parametric Bayesian algorithms (complexity change with the data)
•  Gaussian Process

Wang, Xintao, et al Proceedings of the European conference on computer vision (ECCV) workshops. 2018.

Generative Adversarial Networks (GAN) SR

Prajapati, Kalpesh, et al. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Channel split convolutional neural network 
for thermal image super-resolution

He, He, and Wan-Chi Siu. CVPR 2011. IEEE, 2011.

Single image SR 
Gaussian process regression

input output

Image SR applications:
• Computer vision
• Medical imaging
• …
• Radiation map processing



Channel split convolutional neural network (ChaSNet 
model) for single-channel image SR
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Training dataset: 
• 3000 image pairs - gaussian ‘elliptical’ (representative of plumes)
• 2000 image pairs - gaussian square (representative of human-made surfaces)
Synthetic gaussian ‘elliptical’

High resolution (ground truth)

Downsampling

Low resolution

Synthetic gaussian square
• Simple upscaling divide one pixel of low resolution 

image into 4 pixels 
• Each new pixel has intensity 1/4 of the original pixel

ChaSNet upscaling 

Simple upscaling (non - Machine Learning)

Downsampling

Prajapati, Kalpesh, et al. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
https://github.com/kalpeshjp89/ChasNet.git



ChaSNet for single channel image SR – performance 
evaluation
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Upscaling performance metrics
• PSNR (Peak Signal-to-Noise Ratio): larger is better
• SSIM (Structural Similarity Index): larger is better, 

with max 1 for identical images

Results for 10 iterations

Results for 10 iterations
Percentage Deviation = (upscaled – ground truth) / ground truth * 100%



ChaSNet for single channel image SR – advantage for 
complex patterns
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Patterns PSNR SSIM

ChaSNet 
scaling

Simple 
scaling

ChaSNet 
scaling

Simple 
scaling

1 elliptical 50.6 39.4 0.990 0.982

1 elliptical + 
1 square 40.2 38.0 0.990 0.965

2 elliptical + 
1 square 43.6 37.5 0.994 0.949

Increase 
complexity 

The ChaSNet model upscaling performs well for complex patterns 



Gaussian Process Regression (GPR) model
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He, He, and Wan-Chi Siu. CVPR 2011. IEEE, 2011. https://github.com/fynsta/Super-resolution.git

GPRSR AGPR
Training data single low resolution input image Dataset with many images

Pre-trained model No Yes

Computation speed Slow for large images Fast

Under the framework of Gaussian Process Regression, two models, named GPRSR and AGPR, are implemented.

PSNR SSIM

Simple scaling 37.7 0.948

AGPR
(100 iterations; 

arbitrary dataset)
36.0 0.852

GPRSR
(50 iterations) 41.9 0.991

ChaSNet 46.1 0.994



GPR model performance with varied parameters 
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Model 
parameters PSNR SSIM

AGPR

arbitrary 
dataset;

100 iterations
36.0 0.852

synthetic 
dataset;

100 iterations
42.9 0.989

synthetic 
dataset;

500 iterations
41.7 0.959

• Optimal performance of GPR models achieved 
after varying parameters

• ChaSNet still outperforms the GPR models

Model parameters PSNR SSIM

GPRSR
50 iterations 41.9 0.991
500 iterations 42.2 0.990
5000 iterations 41.9 0.990

ChaSNet 46.1 0.994



Image inpainting
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Image inpainting problem
Ground height map measured by Lidar

• Some pixels missing due to terrain complexity (e.g., Lidar view 
obstructed)

• Need to fill in missing pixels with estimated values before Rad 
map reconstruction

Radiation intensity map reconstructed

• Pixel value has low sensitivity if the measurement time 
near the pixel is short

• We can manually replace some pixels with inpainted 
value



Image inpainting by Deep Gaussian Markov Random Fields 
(DGMRF) 
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Ground Truth With missing pixels

Manually drop 
some pixels

DGMRF model 
inpainting

PSNR: 47.6179
SSIM: 0.9989



Radiation image reconstruction 
and uncertainty quantification
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Bayesian inference for rad image reconstruction

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃(𝜃)

𝑃(𝐷)𝜆 = 𝑉 $ 𝑤 + 𝑏	𝑡

• 𝑤: radiation intensity
• 𝑉: system matrix
• 𝑏: background count rate
• 𝑡: measurement time
• 𝜆: mean counts

• Measured counts x ~ Poisson(𝜆) 
• Negative log likelihood

• 𝜃:		𝑤 (radiation intensity) and 𝑏 (background count rate)
• 𝑃(𝜃):	assume	𝑤 and 𝑏 follow Gaussian distribution
• 𝑃 𝐷 𝜃  : likelihood

Use MCMC-based sampler to draw samples
• Traditional MCMC: slow at higher dimensions
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MCLMC (Microcanonical Langevin Monte Carlo)
Jakob Robnik and Uroš Seljak. Microcanonical langevin monte carlo. arXiv preprint arXiv:2303.18221, 2023.

Preliminary results from MCLMC

MLEM reconstruction used as prior for MCLMC sampling

Synthetic data used for testing 
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Backup slides

19



Rad image reconstruction principle
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I measurements of radiation intensity x[I×1] = [x1, x2, . . . , xI ]T made 
• Unit of XI: counts per unit integration time.
• I stands for discretized positions.  

Intensity x[I×1] follows Poisson distribution with mean λ[I×1] = V[I×J] ⋅ W[J×1] 
• V[I×J] : system matrix describes geometric and detector efficiency of I measurements relative to J image 

voxels (in units of inverse activity (Bq-1)) 
• W[J×1]: intensities to be reconstructed (in units of activity (Bq) or emission rate (γ/s). 

Measurements I independent of reconstructed image voxels J. 
For same measurements, a high-fidelity reconstruction has more voxels (i.e., a larger J), so the 
system matrix V[I×J] has more entries. 


