

Acceleration of Radiological Mapping by Image Super Resolution

Lei Pan¹, Yen-Chun Liu², Simon Mak², Jayson R Vavrek¹

¹Applied Nuclear Physics Program, Nuclear Science Division, Lawrence Berkeley National Laboratory ²Department of Statistical Science, Duke University

Radiation mapping overall goals

Where is the radiation and how bad is it? I.e., what is the radiation *distribution* in the scene?

LiDAR + rad measurements –

Scene representation

Rad image reconstruction

Radiation mapping systems and applications

Handheld / UAS-borne detector systems

Anisotropic angular efficiency function

Contamination mapping / decontamination verification

Chornobyl claw, Vetter et al. (2019)

Rad image reconstruction

 $\lambda = V \cdot w + b t$

- w: radiation intensity
- *V*: system matrix
- *b*: background count rate
- *t*: measurement time
- λ : mean counts

- Measured counts x ~ Poisson(λ)
- Negative log likelihood

$$\ell(\mathbf{x}|\mathbf{\lambda}) = [\mathbf{\lambda} - \mathbf{x} \odot \log \mathbf{\lambda} + \log[\Gamma(\mathbf{x}+1)]]^{\mathrm{T}} \cdot \mathbf{1}$$

• Find the estimates of *w* and *b* by minimizing the negative log likelihood

$$\hat{\mathbf{w}}, \hat{b} = \operatorname*{argmin}_{\mathbf{w}, b} \ell(\mathbf{x} | \mathbf{w}, b)$$

 Iterative reconstruction algorithm: e.g, Maximum Likelihood Expectation-Maximization (MLEM)

Rad image reconstruction

Note: Only 2D map is considered

After low-fidelity reconstruction, perform image upscaling to generate the high-fidelity map

Image upscaling by machine learning algorithms with significantly less computation

Benefits of lower computation cost:

- acceleration of data processing to enable real-time or near real-time reconstruction of high-fidelity results
- reduction of computer memory usage so compact computer can be used on smaller, portable edge systems
 - (can't put an NVIDIA 4090 GPU on every system!)
- reduction of battery usage which allows more system operation time

Image upscaling / Super Resolution (SR) algorithms

Parametric algorithms (learn a fixed set of parameters from training data)

Convolutional Neural Networks

Non-parametric Bayesian algorithms (complexity change with the data)

Gaussian Process

Generative Adversarial Networks (GAN) SR

Image SR

algorithms

Wang, Xintao, et al Proceedings of the European conference on computer vision (ECCV) workshops. 2018.

Channel split convolutional neural network for thermal image super-resolution

Prajapati, Kalpesh, et al. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Single image SR Gaussian process regression

input output He, He, and Wan-Chi Siu. *CVPR 2011*. IEEE, 2011.

Image SR applications:

- Computer vision
- Medical imaging
- ...
- Radiation map processing

Channel split convolutional neural network (ChaSNet model) for single-channel image SR

Prajapati, Kalpesh, et al. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021. https://github.com/kalpeshjp89/ChasNet.git

Training dataset:

- 3000 image pairs gaussian 'elliptical' (representative of plumes)
- 2000 image pairs gaussian square (representative of human-made surfaces)

Synthetic gaussian 'elliptical'

High resolution (ground truth)

Synthetic gaussian square

- Simple upscaling divide one pixel of low resolution image into 4 pixels
- Each new pixel has intensity 1/4 of the original pixel

ChaSNet for single channel image SR – performance evaluation

Upscaling performance metrics

- PSNR (Peak Signal-to-Noise Ratio): larger is better
- SSIM (Structural Similarity Index): larger is better, with max 1 for identical images

Results for 10 iterations

Results for 10 iterations

Percentage Deviation = (upscaled – ground truth) / ground truth * 100%

8

ChaSNet for single channel image SR – advantage for complex patterns

Gaussian Process Regression (GPR) model

Under the framework of Gaussian Process Regression, two models, named GPRSR and AGPR, are implemented. He, He, and Wan-Chi Siu. *CVPR 2011*. IEEE, 2011. https://github.com/fynsta/Super-resolution.git

GPR model performance with varied parameters

	Model parameters	PSNR	SSIM	
AGPR	arbitrary dataset; 100 iterations	36.0	0.852	Percentage Dev agpr_100 iter 0 47 47 95 0 47 47 95 47 47 95 47 95
	synthetic dataset; 100 iterations	42.9	0.989	Percentage Dev agpr_syn 100 iter 20 12 47 95 0 47 95 47 95 47 95
	synthetic dataset; 500 iterations	41.7	0.959	Percentage Dev agpr_syn 500 iter 20 12 47 47 95 0 47 95 0 47 95 0 47 95

		el parar	arameters		PSNR		SSIM		
		50 iterations			4	41.9		0.991	
GPRSR		500 iterations			42	42.2		0.990	
		5000 iterations			4	41.9		990	
	ChaSNet	ChaSNet			4	46.1		4	
4	Percentage De gprsr 50 iter 7 - 47	ev r 20 12 4 - 4 4 12 - 20	Perce gprs 0 47 - 47 95 - 0	entage I sr 500 if	Dev er 20 12 4 - 4 12 - 20 - 12 - 4 12 - 20 - 20	Pero gpr 0 47 - 95 - 0	centage sr 5000	e Dev) iter) 95	- 20 - 12 - 4 4 12 20

- Optimal performance of GPR models achieved after varying parameters
- ChaSNet still outperforms the GPR models

Image inpainting

Image inpainting problem

Ground height map measured by Lidar

Radiation intensity map reconstructed

- Some pixels missing due to terrain complexity (e.g., Lidar view Pixel value has low sensitivity if the measurement time near the pixel is short
- Need to fill in missing pixels with estimated values before Rad map reconstruction

obstructed)

We can manually replace some pixels with inpainted • value

Image inpainting by Deep Gaussian Markov Random Fields (DGMRF)

Radiation image reconstruction and uncertainty quantification

Bayesian inference for rad image reconstruction

 $\lambda = V \cdot w + b t$

- w: radiation intensity
- *V*: system matrix
- *b*: background count rate
- *t*: measurement time
- λ : mean counts

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

- θ : w (radiation intensity) and b (background count rate)
- $P(\theta)$: assume w and b follow Gaussian distribution
- $P(D|\theta)$: likelihood

Use MCMC-based sampler to draw samples

Traditional MCMC: slow at higher dimensions

- Measured counts $x \sim Poisson(\lambda)$
- Negative log likelihood

 $\ell(\mathbf{x}|\boldsymbol{\lambda}) = [\boldsymbol{\lambda} - \mathbf{x} \odot \log \boldsymbol{\lambda} + \log[\Gamma(\mathbf{x}+1)]]^{\mathrm{T}} \cdot \mathbf{1}$

MCLMC (Microcanonical Langevin Monte Carlo)

Jakob Robnik and Uroš Seljak. Microcanonical langevin monte carlo. arXiv preprint arXiv:2303.18221, 2023.

Synthetic data used for testing

Preliminary results from MCLMC

MLEM reconstruction used as prior for MCLMC sampling

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231.

This work was funded by the DOE Office of Science (NP).

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the University of California.

Backup slides

Rad image reconstruction principle

I measurements of radiation intensity $\mathbf{x}^{[I \times 1]} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_I]^T$ made

- Unit of X_I : counts per unit integration time.
- *I* stands for discretized positions.

Intensity $\mathbf{x}^{[I \times 1]}$ follows Poisson distribution with mean $\lambda^{[I \times I]} = \mathbf{V}^{[I \times J]} \cdot \mathbf{W}^{[J \times I]}$

- $V^{[I \times J]}$: system matrix describes geometric and detector efficiency of *I* measurements relative to *J* image voxels (in units of inverse activity (Bq⁻¹))
- $\mathbf{W}^{[J \times I]}$: intensities to be reconstructed (in units of activity (Bq) or emission rate (γ /s).

Measurements *I* independent of reconstructed image voxels *J*.

For same measurements, a high-fidelity reconstruction has more voxels (i.e., a larger *J*), so the system matrix $\mathbf{V}^{[I \times J]}$ has more entries.