

Crack identification and characterization in deformed Nb₃Sn Rutherford cable stacks using machine learning

General MDP Meeting

J.-F. Croteau^{1*}, G. Vallone¹, M. D'Addazio^{1,2}, N. Menon¹, F. Niccoli³, I. Pong¹, P. Ferracin¹, S. Prestemon¹ ¹Lawrence Berkeley National Laboratory, USA, ²Politecnico di Torino, Italy, ³Università della Calabria, Italy

2024-10-09

jcroteau@lbl.gov

Outline

01020304Background and
ObjectivesExperimental Method
Image AnalysisMachine Learning for
Image AnalysisCrack Segmentation
and Statistics

05

Conclusions

Background and Objectives

1. Background and objectives

Experimental method

3. ML for image analysis

 Crack segmentation and statistics

5. Conclusions

Sample Preparation and Loading

G. Vallone *et al.*, "Measurement and Computation of Nb₃Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions," *IEEE TAS*, 2024, doi: 10.1109/TASC.2023.3340126.

- 4-stack of AUP Rutherford cables (40-strand, RRP, 0.85 mm diameter)
- Standard AUP heat treatment
- Impregnated with CTD-101K after heat treatment
- Samples were wrapped in Kapton tape
- Fuji papers were used to confirm load uniformity
- Uniaxial and bi-axial loading at room temperature
- Pre-loading along *x* or *z* for biaxial samples

Schematic of the loading setup

Sample Imaging and Crack Counting

- In 2023, we had to manually count and locate the cracks in the stacks (Marika d'Addazio), so we limited our observation to a few wires in the center of each stack
- SEM images took a lot of time to acquire (high resolution), SEM access was limited and can be expensive, and samples had to be sputtered before imaging

Objectives: (1) use image analysis to segment the cracks and (2) move away from the SEM

Experimental Method

Background and objectives

2. Experimental method

3. ML for image analysis

. Crack segmentation and statistics

5. Conclusions

Sample Preparation

- 1. Cold mount 4-stack in epoxy
- 2. Grind ~4 mm from the edge
- 3. Polish sample up to 1 µm particle size
- Overnight vibratory polishing with OP-S solution (0.04 μm)

- 5. Sample cleaning
 - 1. Clean surface with dish soap under running water
 - 2. Ultrasonic bath and drying in Struers Lavamin
 - 3. Sample drying with hair dryer

General MDP Meeting 2024-10-09 | BERKELEY LAB

Sample drying

Sample Imaging

- Sample imaging with digital microscope Olympus DSX-1000
- Imaging at high magnification with image stacking to ensure focusing over the entire wire and stitching to cover large areas

General MDP Meeting 2024-10-09 | BERKELEY LAB

Sample Cleaning and Imaging Artefacts

- Cleaning artefacts were never completely removed despite trying different techniques and discussing with other labs
- We decided to move forward with these images and included them in the training dataset in the hope of having a more robust model

Image Analysis in Python

- All image analysis and crack statistics was done using Python
- Detectron2: computer vision framework from Meta AI with the Mask R-CNN model
- PyTorch: machine learning library with GPU-accelerated tensor computing
- Scikit-image: image analysis library

ML

- Seaborn: plotting and visualization library
- Numpy: array and matrix manipulation librarv

O PyTorch

Machine Learning for Image Analysis

Background and objectives

2. Experimental method

3. ML for image analysis

 Crack segmentation and statistics

5. Conclusions

Why Machine Learning?

- Cracks and voids have similar colors (dark) and contrast with the Nb₃Sn surroundings
 - Traditional thresholding fails to differentiate the two
- Looking at morphological features is more appropriate
 - Convolutional Neural Networks are suitable for this

Announcement made yesterday! The Nobel Prize in Physics 2024

Ill. Niklas Elmehed © Nobel Prize Outreach John J. Hopfield Prize share: 1/2 Ill. Niklas Elmehed © Nobel Prize Outreach Geoffrey E. Hinton Prize share: 1/2

The Nobel Prize in Physics 2024 was awarded to John J. Hopfield and Geoffrey E. Hinton "for foundational discoveries and inventions that enable machine learning with artificial neural networks"

Machine Learning Workflow

Machine Learning Workflow

Stack imaging (overview)

Wire imaging Cropping patches

Hand labeling cracks

- Manual annotation using MakeSense.ai (clicking to draw the boundary around all cracks)
- Nandana will present a more efficient annotation approach

Machine Learning Workflow

What models should we use for instance segmentation of the cracks in this dataset?

Mask R-CNN and Detectron 2 – Leveraging Computer Vision Open-Source Models

- For this study, we decided to explore the use of open-source models from leaders in computer vision and applying them to scientific problems*
- New novel ML models from the computer vision community are released almost on a daily basis
- We should take advantage of those models
- Mask R-CNN, Detectron2, and Segment Anything Model were all built by Meta Al Research's division

Waymo self-driving car in San Francisco are using 3D object detection with their different detectors (cameras and mid- and short-range lidars)

Mask R-CNN – Model Overview

Instance segmentation

General MDP Meeting 2024-10-09 | BERKELEY LAB

Semantic segmentation in the regions of interest (bounding boxes)

Detectron2 has pre-trained Mask R-CNN models with slightly different architectures and parameters. These pre-trained models and their weights were used to initialize the models that we trained (or fine-tuned) for our application.

Mask R-CNN – Model Training

The model was trained on the Einsteinium/Lawrencium cluster on 1 GPU node (2 min 37 s) and weights from the $1,000^{\text{th}}$ iteration were used for instance segmentation of the entire dataset (< 2.5 h).

Crack Segmentation and Statistics

I. Background and objectives

. Experimental method

3. ML for image analysis

4. Crack segmentation and statistics

5. Conclusions

Crack Segmentation

(2) the length of each crack, (3) the orientation of each crack, and more.

General MDP Meeting 2024-10-09 | BERKELEY LAB

Crack Statistics – Distribution in a Wire 2D histograms of the crack centroid

- Cracks are mainly located along ~45° shear bands, with respect to direction of the largest load
 - As observed in the literature from experiments and FEM
- The orientation of the subelement hexagonal stack does not have a big impact on the crack distribution in a wire

Crack Statistics – Distribution in Stacks

- There are more cracks in the sample pre-loaded along the *z*-axis (as observed last year)
- Some loading and polishing artefacts were found at two corners of the sample pre-loaded along the x-axis
- No ~45° shear bands were observed at the stack level, therefore observations around the center of the stack are representative of the bulk properties or the bulk response to different stress-states $(\sigma_x, \sigma_y, \sigma_z)$

																																																L	ואו		aj											
		Ç	Sa	ar	n	S	е	1	: ((0),	1	5(),	0))						Sa	ar	np	ol	е	2	: ((0	,	15	50	, /	20))					S	Sa	m	ηp	le	93	8:	(2	20	,	15	50	, (0))		Cľ	rad	ck	s/v	vire	е	
•								•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•					•	•	•		•					•	•	•	•			•	•	•	•	•					200)		
		•	•	•	:	•	•	•									8	8				5											•	•	•	•	•			•	6			•	•	•	•				•	•	•	i	•				12(80)		
	•	•	•	•													•		•	•										•		•	•	•	•					•	2			•								•		•		2			40			
8		•	•	•	•	•	•	•	•	•	•								•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•			2		•	•		6				•	•				•	•	8	art	et	a	Cts	3

Crack Statistics – Crack Count and Morphology

- There are more cracks in the sample pre-loaded along the *z*-axis and less cracks in the one pre-loaded along the *x*-axis.
- The sample pre-loaded along the *x*-axis has (1) slightly shorter cracks and a narrower length distribution and (2) the crack orientation is more spread and not all mostly vertical

Conclusions

Background and objectives

. Experimental method

3. ML for image analysis

 Crack segmentation and statistics

5. Conclusions

Conclusions

- We trained the Mask R-CNN model for instance segmentation of cracks in Nb₃Sn and used it on three 4-stacks. This trained model could be used to accelerate the inspection of coil crosssections cut along the same plane.
- Automated crack instance segmentation and got statistics on the number of cracks, their distribution in wires and in stacks, and on morphological descriptors (crack length and orientation).
- Previous studies always required a human to manually count and locate the cracks (very time consuming) and information about their shape was always qualitative.
- Next step: study more stress-states to better understand the effect of pre-loading on crack length and orientation

Thank you

General MDP Meeting

J.-F. Croteau^{1*}, G. Vallone¹, M. D'Addazio^{1,2}, N. Menon¹, F. Niccoli³, I. Pong¹, P. Ferracin¹, S. Prestemon¹ ¹Lawrence Berkeley National Laboratory, USA, ²Politecnico di Torino, Italy, ³Università della Calabria, Italy

2024-10-09

jcroteau@lbl.gov

Transversal Cracks

- Voids are now lines, so they look similar to cracks.
- More annotated data is required to re-train the model.

