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Larger goal

Cu stabilisation (optional)

Ag cap layer
REBCO layer
buffer layer stack

 Correlating transport and mechanical
properties to microstructure

substrate

° CharaCterlzatlon Of ReBCO COndUCtOrS Of C Barth et al 2015 Supercond. Sci. Technol.
varying thickness between 0.6 — 1.9 um Presta pamiteen s RO L o 7

- SEM of top layer after etching out Cu and Ag
layers to reveal ReBCO layer

 Defects: voids, CuO particles, and a-axis
grains

Imaglng and etchlng done at FSU by D. Abraimov et al.
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Defect detection

Existing methodologies

» Counting defects manually
* Built-in ML technigques within image analysis software (ImageJ)

Characterization of graded ReBCO conductors for the 40T superconducting magnet project
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https://nationalmaglab.org/library/presentations/NHMFL_Presentation-10886.pdf
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Conclusion

Defect detection

Fiji Trainable Weka Segmentation

Oriqins of low-temperature in-field Jc variability in modern MOCVD ReBCO tapes
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. ETD 5000x 4.0 mm 11:26:01PM 5.00kV y:22.0970 mm 0.0° FSU NHMFL ASC

« Annotations need to be drawn

* Elementary ML models

* Features are not learned but user-defined
* Integration for analysis can be difficult

« Data wrangling
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https://nationalmaglab.org/library/presentations/NHMFL_Presentation-10885.pdf
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Convolution Neural Networks

 Image recognition (classification)

* Object detection P 0.6 sheep
P 0.3 dog
. P 0.1 cat

- Segmentation P 0.0 horse

Image Recognition Semantic Segmentation

Object Detection Instance Segmentation
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Reusing foundational models

0 Select pre-trained model (~118K images) e Training and Evaluation

Annotations and
labels

e Final goal — test on unlabeled images
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Segment Anything Model (SAM)

Prompts specifying what to segment in an image allows segmentation without the need for
additional training

SAM

—

Able to differentiate “foreground
from “background”
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Backend SAM for annotation

Zero-shot learning allows for interactive segmentation cvat ai
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cvat.ai
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Images
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— ‘.. Annotations .
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Detectron2: Mask R-CNN e Detectron2

* Rapid implementation of Mask Region-based Convolutional Neural Network (R-CNN)

2 step-models
— 1. Region proposals to determine regions with objects
— 2. Bounding box refinement and classification, Instance segmentation using a CNN in

region proposal
« Qutputs: Masks, Bounding boxes, Classes, Scores

Instance Segmentation

Object detection + Classification
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Validation results: Visualized

* ~ 15 mins to train for 5000 iterations on 1 GPU, 12.3 secs inference on CPU

« Some cases of partial masks (1) and missing instances (2)

CuO Tilted grain
~ Vod|
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Validation results: Visualized

Statistics from single image
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Validation results: Visualized

Statistics from all images

Void 1

© CuO particles 1 i e

O 1 I ‘ 1 ! !
Tilted grains{ ‘ . v. | - |
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YOLOvVS ®P uitralytics

YOLOvS

tas o O iwer
* You Only Look Once: Single-step detection and = =m= a= =ax = m._':
segmentation T e

- Relatively larger model size e = =-:‘__ o ~ s
* Faster inference - better for real-time detection — L m- “f:_: T
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Validation results: Visualized

« ~ 3 hrs. to train for 5000 iterations on 1 GPU, 3.2 secs inference on CPU
* No partial masks like Mask R-CNN (1)

« Some cases of obvious instances not being detected (2)

Cuo Tilted grain
Void
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Performance on test images

* Near perfect predictions on ‘clear’ images

* Issues with messy images (none used for train/validation) but still identifies the less
ambiguous defects, especially voids

Mask R-CNN

8AO10A
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Comparison

Mask R-CNN

YOLO

Comparison

Conclusion

Bounding box detection is better by YOLO while segmentation is better by Mask R-CNN

80

YOLOvV8
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o Bounding box

60 Mask R-CNN
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AP-TiltedGrain (B)

70

Segmentation

AP(B)

AP-Void (B)

AP: Average precision

Mask R-CNN

AP-CUO (B)
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Concluding remarks

* Main takeaways:
— SAM for annotation
— Detectron2/ YOLO for object detection and instance segmentation
— End-to-end solution for automating analyses
— Models evolving by the day

* Next steps:
— Models are only as good as labeled training data — train more to predict better
— Correlate properties with the defects to find the origins of variation

Fiji Weka (ImageJ) Mask R-CNN
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