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Larger goal

• Correlating transport and mechanical 

properties to microstructure

• Characterization of ReBCO conductors of 

varying thickness between 0.6 – 1.9 m

• SEM of top layer after etching out Cu and Ag 

layers to reveal ReBCO layer

• Defects: voids, CuO particles, and a-axis 

grains 
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C Barth et al 2015 Supercond. Sci. Technol.
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CuO particles Tilted grains

Voids

Imaging and etching done at FSU by D. Abraimov et al. 



Defect detection

• Counting defects manually

• Built-in ML techniques within image analysis software (ImageJ)

Existing methodologies
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Fiji Trainable Weka Segmentation

Characterization of graded ReBCO conductors for the 40T superconducting magnet project
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https://nationalmaglab.org/library/presentations/NHMFL_Presentation-10886.pdf


Defect detection

Fiji Trainable Weka Segmentation
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Origins of low-temperature in-field Jc variability in modern MOCVD ReBCO tapes

• Annotations need to be drawn

• Elementary ML models

• Features are not learned but user-defined

• Integration for analysis can be difficult 

• Data wrangling
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https://nationalmaglab.org/library/presentations/NHMFL_Presentation-10885.pdf


Convolution Neural Networks

• Image recognition (classification)

• Object detection

• Segmentation
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Reusing foundational models

Defect detection in REBCO using ML | BERKELEY LAB 7

Select pre-trained model (~118K images)

Annotations and 

labels
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Training and Evaluation

Final goal – test on unlabeled images 
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Segment Anything Model (SAM)

Prompts specifying what to segment in an image allows segmentation without the need for 

additional training
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Backend SAM for annotation
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Zero-shot learning allows for interactive segmentation
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cvat.ai

cvat.ai


Data preparation
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Detectron2: Mask R-CNN

• Rapid implementation of Mask Region-based Convolutional Neural Network (R-CNN)

• 2 step-models

– 1. Region proposals to determine regions with objects 

– 2. Bounding box refinement and classification, Instance segmentation using a CNN in 

region proposal

• Outputs: Masks, Bounding boxes, Classes, Scores
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Object detection + Classification



Validation results: Visualized

• ~ 15 mins to train for 5000 iterations on 1 GPU, 12.3 secs inference on CPU  

• Some cases of partial masks (1) and missing instances (2)
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Validation results: Visualized
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Statistics from single image
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Void = 2

CuO particles = 18

Tilted grains = 8

Fitted ellipse:

Major axis

Minor axis



Validation results: Visualized

Statistics from all images
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YOLOv8
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• You Only Look Once: Single-step detection and 

segmentation

• Relatively larger model size

• Faster inference → better for real-time detection
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Validation results: Visualized

• ~ 3 hrs. to train for 5000 iterations on 1 GPU, 3.2 secs inference on CPU  

• No partial masks like Mask R-CNN (1)

• Some cases of obvious instances not being detected (2)
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Performance on test images

• Near perfect predictions on ‘clear’ images

• Issues with messy images (none used for train/validation) but still identifies the less 

ambiguous defects, especially voids
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Comparison

Bounding box detection is better by YOLO while segmentation is better by Mask R-CNN

Defect detection in REBCO using ML | BERKELEY LAB 18

ConclusionComparisonYOLOMask R-CNNModel + Data PrepIntroduction

0

10

20

30

40

50

60

70

80

AP(B) AP-Void (B) AP-CuO (B) AP-TiltedGrain (B)

Bounding box

0

10

20

30

40

50

60

70

AP(B) AP-Void (B) AP-CuO (B) AP-TiltedGrain (B)

Segmentation
YOLOv8

Mask R-CNN YOLOv8

Mask R-CNN

AP: Average precision



Concluding remarks
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• Main takeaways:

– SAM for annotation

– Detectron2/ YOLO for object detection and instance segmentation

– End-to-end solution for automating analyses 

– Models evolving by the day

• Next steps: 

– Models are only as good as labeled training data – train more to predict better

– Correlate properties with the defects to find the origins of variation

Fiji Weka (ImageJ) YOLOv8Mask R-CNN



Thank You
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