APPLIED SUPERCONDUCTIVITY CENTER NATIONAL HIGH MAGNETIC FIELD LABORATORY FLORIDA STATE UNIVERSITY

ARDAP Meeting "Teo-BR" and Barrel Sample Summary

Daniel Scott Davis,

U. P. Trociewitz, Y. Kim, S. Barua, E.C. Martin, G. Bradford, J. Kvitkovic, G. Miller, J. Jiang, E. Hellstrom, D.C. Larbalestier, T. Shen (LBNL)

DOE ARDAP - Enhancing Domestic Production of High Temperature Superconducting Bi₂Sr₂CaCu₂Ox/Ag wires for High Field Magnets

10/11/2024

ASC-NHMFL is supported by US DOE-OHEP (DE-SC0010421, DE-SC0018683), US DOE-ARDAP DE-AC02-05CH11231/AWD00007176, NHMFL Core Grant (NSF 2128556), FSU special allocation for Bi-2212 commercialization, the State of Florida, and the US DOE-MDP for much context and many collaborations. LBNL is supported by US DOE-OHEP-MDP under contract No. DE-AC02-05CH11231. The National High Magnetic Field Laboratory is supported by National Science Foundation through NSF/DMR-2128556* and the State of Florida.

Two Cable Solenoids Combine "TEO" and "BR" Designs

Too PP 1 Cable Selenaid			
Wire	Product No.	PMM240205 – ARDAP #1	
	Powder	Engimat G2A-07A_HS (37 x 18)	
	Insulation	Pure Alumina (Nextel) Braid	He
	Diameter [mm]	Ф 0.7 (bare)	
Cable	ID, Size	LBNL-2007A, 6-strand	
	Geometry	2.35 x 1.22 mm (bare) / 2.5 x 1.5 mm (ins.)	123
ID ; OD ; Height [mm]		12.1; 32.4; 60.0	E
Turn ; Layer (Total)		22; 6 (132)	ME L
Magnet constant [mT/A]		2.4	MAC
Inductance [mH]		0.09	
Conductor length [m]		10	
Status		Ready for Test	
Cable received 07/15			

- Cable received 07/1
- Insulation 07/23 07/29
- Mandrel Welding 07/24
- Mandrel oxidation 07/25 07/29
- Resistive magnet time awarded 07/29
- Ag terminals machined 07/31

La Denne				
Teo-BR-2 Cable Solenoid				
Wire	Product No.	PMM240325 – ARDAP #2		
	Powder	Engimat G2A-14A_HS (37 x 18)		
	Insulation	Pure Alumina (Nextel) Braid		
	Diameter [mm]	Φ 0.7 (bare)		
Cable	ID, Size	LBNL-2008 A, 6-strand		
	Geometry	2.35 x 1.22 mm (bare) / 2.5 x 1.6 mm (ins.)		
ID; OD; Height [mm]		<mark>12.1</mark> ; 38.4; 60.0		
Turn ; Layer (Total)		22; 8 (176)		
Magnet constant [mT/A]		3.7		
Inductance [mH]		0.2		
С	onductor length [m]	14		
Status		Ready for Test		
Part Charles				

- Winding 07/31-08/02
- OPHT reaction 08/07-08/9
- Epoxy VPI 08/12-08/15
- Two magnets ready for testing by 08/16
- Testing 08/19-08/23

Teo-BR Deltech Over-Pressure Heat Treatment was Well-Behaved

Unexpected leakage despite alumina insulation

9-strand (Ø 0.8 mm)

2212

happens both fiber types

will react with liquid Bi-

Cable Barrel Performance Close to Short Sample Limit

Barrel outrunning heating to see cable performance

ASC

Even high ramp rates showed signs of current redistribution and early shift from strand level power-law index (~20) to higher index (~100), indicating possible temperature rise at highest currents

20T run6 1000 A/s

Cable and Strand Cross Sections Extracted from Barrel Pigtail

Good section

Most of the bundles are affected by the leakage

Two Hexagonal bundle disappeared

7

Number of Affected Strands Varies Along Cable

SEM-BSD image of wire surface extracted from cable

Teo-BR 1&2 Performance Limited by Inner Layer

Teo-BR-2 31.2 T VI curve with inductive offsets removed. Layer 1 is fit to a power law with a low index value ~3. 10 A/s Teo-BR-1 31.2 T VI curve with inductive offsets removed. Layer 1 is fit to a power law with a low index value ~2. 100 A/s

Low Inductance and Current Sharing Enable 200 T/s to +3.4 T

To evaluate cable magnet operation and demonstrate resilience, we ramped at max slew-rate into the quench resistance limits with our 10 V supplies

Teo-BR-2, 31 T high ramp rate field generation.

Teo-BR-1, 31 T high ramp rate field generation.

Summary – A Lot Learned in a Short Time

- Extending "Teo" and "BR" design features to cables we were able to get from cable to test coil in 1 month to take advantage of 31 T NHMFL Resistive Magnet time
- Demonstrated Cable Magnet Technology
 - Insulation, terminals, winding, VPI
 - Low-inductance and high-stability allowed 200 T/s fast-ramping and target field production despite limiting section.
- Revealed an unknown-unknown quickly so we can delve into the science
 - We can start by looking into contamination, 0.7 mm sheath thickness and filament spacing, tight bend radius samples with and without over-pressure
- Next Steps
 - Continued post-mortem investigations
 - coil-cross sections for radial leakage amount
 - Are barrels of other cable compactions worth measuring now despite spread of performance possible from leakage?
 - Extracted strand barrels and short samples +OPHT
 - Cable surface imaging