WBS1.06 Background Control T.O'Donnell Virginia Tech

CUPID LBNL Project Review December 16-17, 2024

WBS 1.06: Overview

- Organization
- Requirements
- Scope and Technical Specification
- Risks
- Cost and Schedule
- Interfaces
- Lessons Learned
- Summary

WBS 1.06: Organization

L3 first name: primary responsibility L3 second name: secondary responsibility

Contain US Project Scope

CUPID: L1 Requirements

Requirement

Pileup BI	$0.5 \cdot 10^{-4} \text{ counts/(keV \cdot kg \cdot yr)}$
Radioactive BI	$0.47 \cdot 10^{-4} \text{ counts/(keV \cdot kg \cdot yr)}$
β/γ - α Discrimination Efficiency	99.7%
Light Detector Risetime	$0.5 \mathrm{ms}$
Light Detector S/N after NTL amplification	60
Detector Cooling Time	6 weeks
Minimum Achievable Operating Temperature	10 mK
Light Yield ⁺	0.36 keV/MeV
Combined Signal Selection Efficiency [*]	86.3%
Fraction of Working LD At Beginning of Operation	0.98
Fraction of Working HD At Beginning of Operation	0.995
Readout Wires Total Capacitance	$500 \mathrm{\ pF}$
Total Cross-Talk	-65 dB
Hardware/Spare Operation Time	20 yr

Requirements for WBS1.06 flow down from this

Value

• Science driver: background budget of 1×10^{-4} ccky to achieve design sensitivity

4

- Total background budget requirement: 1.0×10^{-4} ccky
- There many paths to meet this requirement

ent: 1.0×10^{-4} ccky uirement

Cryostat and Shields refers to the cryogenic and shielding infrastructure already in place from CUORE which will remain in CUPID

T. O'Donnell, Virginia Tech

7

Crystals refers to active/sensitive detector elements, namely LMO crystals and Ge-LDs

Close components refers inactive detector elements near the sensitive elements: Cu frames, PTFE, CuPEN, and small parts such as the NTDs, heaters, transition pieces and Au wire

- Total background budget requirement: 1.0×10^{-4} ccky
- There many possible paths to meet this requirement
- We have adopted this path as it presents low risk to meet requirement

T. O'Donnell, Virginia Tech

- Total background budget requirement: 1.0×10^{-4} ccky
- There many possible paths to meet this requirement
- We have adopted this path as it presents low risk to meet requirement

T. O'Donnell, Virginia Tech

11

- Total background budget requirement: 1.0×10^{-4} ccky
- There many possible paths to meet this requirement
- We have adopted this path as it presents low risk to meet requirement

- Total background budget requirement: 1.0×10^{-4} ccky
- There many possible paths to meet this requirement
- We have adopted this path as it presents low risk to meet requirement

- Total background budget requirement: 1.0×10^{-4} ccky
- There many possible paths to meet this requirement
- We have adopted this path as it presents low risk to meet requirement

- Total background budget requirement: 1.0×10^{-4} ccky
- There many possible paths to meet this requirement
- We have adopted this path as it presents low risk to meet requirement

- Total background budget requirement: 1.0×10^{-4} ccky
- There many possible paths to meet this requirement
- We have adopted this path as it presents low risk to meet requirement

WBS 1.06: Overall Scope

- Screen detector materials using techniques with appropriate sensitivity (ICPMS, NAA, HPGe and bolometric screening)
- Document results
- Monitor integrity of handling procedures by screening witness samples
- Deliver decision on whether or not material is consistent with radioactive BI requirement

1.06 Background Control IT L2: L. Pagnanini (GSSI) US L2/CAM: T. O'Donnell (VT) FR L2: P. Loaiza (IJCLab)

1.06.01 Management

1.06.02 Screening Labs IT IT L3: S. Capelli (UniMiB)

1.06.03 Screening Labs US US L3: C. Grant (BU)

1.06.04 Screening Labs FR FR L3: D. Poda (IJCLab)

1.06.05 Crystal Validation Runs IT L3: L. Marini (INFN LNGS) US L3: K. Alfonso (VT) FR L3: E. Olivieri (IJCLab)

Contain US

Project Scope

WBS 1.06:Low level requirements methodology

- Lower level requirements on sensitivity of screening flow down from the • background budget
- The low-level requirements are determined using the CUPID detector simulation which can estimate the radioactive background index corresponding to a given amount of radio-contamination of materials
- In the following we state the low-level requirements in terms of bulk and surface radioactivity levels
- Due to CUPID's alpha discrimination ability, the dominant contributors to • 228Th chains), particularly surface contamination with these emitters
- The surface radio purity requirements also lead to requirements on recontamination for example with radon or dust

the background budget are high Q-value beta+gamma emitters (226Ra and

WBS 1.06: Inventory of Materials

Material

LMO Crystals

Copper structure

Light detectors (Ge)

PTFE holders

PEN Flex cables

Heaters + Transition pieces (Si)

NTDs (Ge)

Au wire

(Detector geometry + simulations + detector response) + background budget set the radiopurity screening requirements for detector materials

T. O'Donnell, Virginia Tech

Mass (kg)	Surface Area (m ²)
446.487	19.391
89.650	18.049
10.077	7.721
8.290	4.538
0.879	2.910
0.056	0.111
0.104	0.072
0.001	0.008

WBS 1.06: Requirement on Radioactive BI

Material	Bulk (uBq/kg)	Surface (nBq/cm2)	Planned Assay method
LMO Crystals	0.4 (226Ra) 0.4 (228Th)	2.0 (226Ra) 2.5 (228Th)	Bolometer/ICPMS/NAA
Copper structure	6.6 (226Ra) 17.3 (228Th)	4.8 (226Ra) 5.5 (228Th)	Bolometer/NAA/HPGe
Light detectors (Ge)	20 (226Ra) 10 (228Th)	10 (226Ra) 10 (228Th)	Bolometer/NAA/ICPMS
PTFE holders	100 (226Ra) 32 (228Th)	4.4 (226Ra) 1.5 (228Th)	Bolometer/NAA/HPGe
PEN Flex cables	500 (226Ra) 400 (228Th)	10 (226Ra) 10 (228Th)	NAA/ICPMS/HPGe
Heaters + Si pieces	2000 (226Ra) 600 (228Th)	100 (226Ra) 50 (228Th)	NAA/ICPMS/alpha spect.
NTDs (Ge)	5000 (226Ra) 2000 (228Th)	100 (226Ra) 50 (228Th)	NAA/ICPMS/alpha spect.
Au wire	10000 (226Ra) 4000 (228Th)	100 (226Ra) 50 (228Th)	ICPMS

WBS 1.06: Requirement on Radioactive BI

Material	Bulk (uBq/kg)
¹⁰⁰ MoO ₃ powder	2500 (226Ra) 800 (228Th) 100 (40K)
Li ₂ CO ₃	500 (226Ra) 500 (228Th) 15 (40K)

Screening requirements on precursors are more modest as our experience is crystal growth significantly purifies the material

LBNL Project Review, December 16-17, 2024

21

WBS 1.06: Requirement on Radon Recontamination

- Simulations + Background budget set Rn recontamination requirement: 80nBq/cm²
 - More relaxed than ²²⁶Ra and ²²⁸Th due to active PID
- Mitigations:
 - Nitrogen-flushed glovebox handling
 - Rn impervious storage

 - Rn-free air when glovebox handling not feasible (installation) Monitoring by deploying and counting witness samples

WBS 1.06: Requirement on dust

- Simulations + Background budget set surface dust requirement: 10ng/cm²
- Mitigations:
 - Clean room handling
 - Nitrogen-flushed glovebox handling inside cleanroom
 - Monitoring dust by deploying and counting witness surfaces

WBS 1.06.03: Screening Labs US – Scope

- Manages Screening Resources in US other than bolometric screening
 - Screen samples of precursor powders for crystals with HPGe, ICPMS and NAA
 - Screen samples of LMO crystals with ICPMS Screen samples of PTFE(small parts) with ICPMS and NAA Screen samples of light detector and NTD Ge with ICPMS and NAA

WBS 1.06.03: Technical Specifications

- Manages Screening Resources in US other than bolometric screening
 - ICPMS
 - contamination which meets our requirements
 - HPGe Screening
 - sensitivities better than 0.1 mBq/kg which meets our requirements
 - -NAA
 - Neutron Irradiation at MITR
 - HPGe detectors at BU and VT for counting
 - Sensitivities of 10⁻¹⁴-10⁻¹² g/g on U/Th contamination which meets our requirements

Contract with PNNL, routinely achieves 10⁻¹⁵-10⁻¹² g/g sensitivity on U/Th

Access to low background counting facility at SURF for screening precursors,

WBS 1.06.03: Maturity

- NAA, HPGe and ICPMS are well-established techniques that meet our scope requirements
- L3 Manager has decades of experience with these the techniques

WBS 1.06.05: Crystal Validation Runs — Scope

- ulletin dilution refrigerator
- <0.2uBq/kg bulk LMOs <2nBq/cm2 surface LMOs <2nBq/cm2 surface on LDs
- Runs will be performed in HallC cryostat at LNGS
- US scope is to perform 4 CCVR runs (run 3, 6, 8 and 10) •
 - Assemble CCVR array
 - Installation and cooldown of cryostat
 - Data taking and data analysis
 - Warmup and dismounting array

Bolometric screening of final detector-quality components operated as mini-array

• This is our most sensitive screening technique. Designed to achieve sensitivity:

WBS 1.06.05: Technical Specifications

Description	
#LMO crystals	
#LDs	
#NTDs / Heaters	
#NTL HV channels	
#Cu frames +PTFE	
Cryostat run time	
Cryostat base temperature	
DAQ live time	
Analysis Efficiency	
Measured LMO Energy resolution	Be
Measured Light Yield	

12 (3 floors of 4) randomly selected

16 (4 floors of 4) randomly selected

28 / 28 randomly selected

16

Enough for 3 LMO floors and 4 LD floors

60 days

10mK

40 days

80%

able to measure 5keV FWHM at 2615keV

Be able to measure 0.3keV/MeV

WBS 1.06.05: Maturity

- the CUPID collaboration.
- Method was used successfully to validate the crystals of CUORE

Crystal validation runs are a well-established technique in

HallC cryostat has been used to run CCVR for CUORE and R&D runs for CUPID which meet the technical specifications

WBS 1.06: KPPs

	Threshold	Objective
WBS 1.06	Delivery to LNGS of screening results of samples with required screening technique and sensitivity	Same as Threshold

WBS 1.06: Risks

- L2 and L3 managers maintain this section of the risk registry
- Some examples

Risk ID Likelihood Description Turnover of key personnel 106030055 Very likely Material fails screening 106030052 Unlikely Instrument/facility 106030054 Likely downtime/unavailable

Ri	sk Rating	L٥١	N	Medium		High
	Likolihood		Consequenc	e		
	LIKEIINOOd	Cost	Schedule	Technical	N	<i>litigation</i>
;	Very likely	Marginal	Significant	None	Hirir overlap	ng schedule, o training, train deputies
	Unlikely	Marginal	Significant	None	Flo scr mat	at between eening and terial usage
	Likely	Marginal	Significant	None	Redu instrum	ndant backup nents available

WBS 1.06: Cost, Schedule and Interfaces

- Methodology lacksquare
 - Schedule and logic developed in Primavera P6 •
 - List of tasks screening tasks developed in consultation with L2s and L3s for each • WBS
 - Resources required: time, labor, internal and external facilities, materials, were • estimated in consultation with instrument operators and stakeholders using bottoms-up approach
 - Past experience with similar tasks •
 - Vendor quotes •
 - Dependancies tracked in P6 as predecessors and successors ullet
 - Iterate/scrub regularly •

CUPID WBS 1.06 Technical Review, July 17-18, 2023

WBS 1.06 FY Budget by Country

Sum of Value	Column Labels 🛛 🖵															- 1
	□ Total_\$															Total_\$ Total
Row Labels	FY22	FY23 F	Y24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33	FY34	FY36	FY37	
■US		27.2 1	35.0	22.9	196.2	66.2	51.9	242.7	47.0	139.7	376.7	328.1	36.9	18.0	11.0	1699.5
🗄 Phase 1		27.2 1	35.0	22.9	196.2	66.2	51.9	242.7	14.9	34.0						791.0
🗄 Phase 2									32.1	105.7	376.7	328.1	36.9	18.0	11.0	908.5
⊟IT			69.6	63.8	178.2	60.4	280.9	67.2	161.7	151.4	113.4	36.3				1182.8
🗄 Phase 1			69.6	63.8	178.2	60.4	280.9	67.2	9.1	36.3						765.3
Description: Phase 2									152.6	115.1	113.4	36.3				417.5
■ FR	101.1	60.0	14.9													176.0
🗄 Phase 1	101.1	60.0	14.9													176.0
Grand Total	101.1	87.2 2	219.4	86.7	374.4	126.6	332.7	309.9	208.7	291.1	490.2	364.4	36.9	18.0	11.0	3058.2

 Fully loaded resources for US costs IT and FR only M&S costs shown

Unit: \$k

WBS 1.06 US Budget

Breakdown of US costs by FY in \$k

LBNL Project Review, December 16-17, 2024

1.06 Background Control

1.06 Budget

 Budget Breakdown by WBS and stage

- Sum of Value
- Row Labels
- ≡US
 - Phase 1
 - = 1.06 Background Cont
 - ± 1.06.01.01 Backgrou
 - ± 1.06.01.02 OPC: Bac
 - 🗄 1.06.03.01 Screenin
 - ± 1.06.03.02 OPC: Scr
 - ± 1.06.05.01 Commiss
 - I:06.05.02 LMO Crys
 - Phase 2
 - = 1.06 Background Cont
 - ± 1.06.01.01 Backgrou
 - ± 1.06.01.02 OPC: Bac
 - 🗄 1.06.03.01 Screenin
 - ± 1.06.05.02 LMO Cry

Grand Total

Unit: \$k

	Column Labels	- T -		
17	HOURS		DOLLARS	Total_\$
		28.1	544.2	1699.5
		13.0	355.8	791.0
trol		13.0	355.8	791.0
und Control Management		1.7	53.4	112.0
kground Control Management			5.3	7.1
ng Labs US		1.9	239.9	347.1
eening Labs US		.3	15.0	18.0
sion US CCVR Lab		1.8	16.0	70.8
stal Validation Runs		7.3	26.2	236.0
		15.1	188.3	908.5
trol		15.1	188.3	908.5
und Control Management		2.0	66.8	182.0
kground Control Management		.2	8.0	29.0
ng Labs US		1.4	14.9	105.8
stal Validation Runs		11.5	98.7	591.6
		28.1	544.2	1699.5

1.06 US Budget by Resource Type (in \$k)

US costs breakdown by Labor vs Non-labor

+ -

T. O'Donnell, Virginia Tech

LBNL Project Review, December 16-17, 2024

+ -

WBS 1.06 Personnel requirements

US labor requirements by skill-type vs FY

WBS 1.06 Personnel requirements

Sum of Value	Column Labels	-													
Row Labels	FY23		FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33	FY34	FY36	FY37
■US		0.3	1.2	0.2	0.4	0.6	1.0	3.5	0.2	0.8	3.9	3.1	0.2	0.1	0.0
Phase 1		0.3	1.2	0.2	0.4	0.6	1.0	3.5		0.1					
⊞BU		0.1	0.1	0.1	0.1	0.1									
■NW			0.7				0.4	2.0							
■ UNCOSTED			0.3	0.1	0.2	0.4	0.5	1.5							
€VT		0.2	0.1	0.0	0.0	0.1	0.0	0.0		0.1					
Phase 2									0.2	0.7	3.9	3.1	0.2	0.1	0.0
⊞BU										0.2	0.1				
■NW										0.1	2.0	1.6			
■ UNCOSTED									0.2	0.2	1.6	1.5	0.2	0.1	0.0
€VT									0.0	0.3	0.2	0.0	0.0	0.0	0.0
Grand Total		0.3	1.2	0.2	0.4	0.6	1.0	3.5	0.2	0.8	3.9	3.1	0.2	0.1	0.0

US labor breakdown by skill-type vs institution

WBS 1.06: Schedule

- Fully loaded schedule from P6 for staged deployment
- Not on critical path except for final CCVR test (crystals) needed for final tower)

	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32	FY 33	FY 34	FY 35	FY 36	FY 3
Milestones				•	COMP: CD-	1/3A ESAA	B Approval									
					•	COMP: CD-	2/3B ESAAI	3 Approval								
											COMP: C	0-4 ESAAB	Approval/P	roject Com	plete (BCD)	•
Background Control Management																
Screening Labs IT - Non-US																
Screening Labs US																
Screening Labs FR - Non-US																
Crystal Validation Runs																

- Dependancies tracked in P6 as predecessors and successors ullet
- •

L2 and L3 managers control interfaces, draft interface control documents in place

Interface matrix

- Dependancies tracked in P6 as predecessors and successors
- \bullet

L2 and L3 managers control interfaces, draft interface control documents in place

Sample exchange and screening results between WBS1.02.02 and WBS1.06.03

LBNL Project Review, December 16-17, 2024

41

- Dependancies tracked in P6 as predecessors and successors
- \bullet

L2 and L3 managers control interfaces, draft interface control documents in place

CCVR crystals interface between WBS1.02.03 and WBS1.06.05

- Dependancies tracked in P6 as predecessors and successors
- \bullet

L2 and L3 managers control interfaces, draft interface control documents in place

Readout for CCVR interface between WBS1.05 and WBS1.06.05

LBNL Project Review, December 16-17, 2024

43

WBS 1.06: Lessons learned/Technical Review Response

- Technical review held in July 2023 lacksquare
- Review committee provided three recommendations

Response: Risk registry is now in place

goal (UPP)).

Response: We now state the background budget with a breakdown of requirements by component. We identify levels that have been achieved and levels which assume projected improvements

> the availability and priority of the facility for its CVR.

Response: We no longer plan to use NEXUS

The Collaboration should make sure to have the risk registry in order for CD-1.

The Collaboration's message on the background index (BI) is not perspicuous. The differentiation between their goal and KPP on BI can be sharpened (e.g., a clear delineation of the achieved level and projected improvements, as well as their tie to the

The Collaboration has not established a written agreement with SuperCDMS on the usage of the NEXUS facility. The Collaboration should pursue this agreement to secure

WBS 1.06: Summary

- ulletmaterials
- CUPID radiopurity requirements come from background budget and mature simulations of detector geometry and response
- Well-established techniques are available, validated by data from the current generation of low-background experiments
- The management team (L2s and L3s) have experience in Background Control
- Risks are manageable

Scope of WBS 1.06 Background control is to assess radiopurity of detector

References

1	Eur. Phys. J. C79, 583 (2019)
2	<u>Eur. Phys. J. C 77, 543 (2017)</u>
3	https://doi.org/10.1103/PhysRevLett.126.171801
4	https://doi.org/10.1140/epjc/s10052-019-7078-8
5	<u>NIM A 965 163761 (2020)</u>
6	https://doi.org/10.48550/arXiv.2305.01402
7	AIP Conf. Proc. 1672, 130002 (2015)
8	http://dx.doi.org/10.1016/j.nima.2011.01.017
9	https://doi.org/10.48550/arXiv.2209.07588
10	https://doi.org/10.1016/j.nima.2017.04.049
11	https://doi.org/10.1016/j.nima.2016.04.070
12	https://doi.org/10.1140/epjc/s10052-020-8420-x
13	http://dx.doi.org/%2010.1016/j.astropartphys.2012.02.008

LBNL Project Review, December 16-17, 2024

46