

NEWGAIN - ASTERICS Mini workshop LBNL/FRIB/CEA

Cryogenic Design Overview

Damien Simon – Tanguy Cadoux – Elena Fernandez Mora Hélène Felice – Bertrand Hervieu – Armand Sinanna – <u>Hervé Allain</u> <u>Roser Vallcorba</u> – Christophe Berriaud – Francesco Stacchi Robert Touzery – Sony Trieste – Thibault Genestier – <u>Patrick Graffin</u> Thierry Guillo – Nicolas Bakon – <u>Victor Kleymenov</u> – David Vurpillot Etienne Rochepault – Jean-Marc Gheller –Thomas Thuillier

laboratoire commun CEA/DRF

outline

- **1. Introduction**
- 2. Cryogenic synoptic
- 3. Cryogenic Design
- 4. Condenser
- **5.** Current leads
- 6. Thermal budget at 4 K
- 7. Thermal screen simulation
- 8. Cool down
- 9. Instrumentation

10. Conclusions

1. Introduction / magnet cooling

- ➤ Magnet immersed in a liquid helium bath 1.1 bar, 4.31 K
- > The different heat loads vaporize liquid helium
- > Cold vapors liquefied by condensers connected to the second stage of cryocoolers
- > Adjustment between cooling power and heat load by heaters that vaporize liquid
- > Thermal shield circuit connected to the first stage of cryocoolers
- Heat loads: 7 W dynamic + static heat loads (radiation + conduction)
- HTS current leads
- > PED: burst disc and valve to protect the system against over pressure

2. Magnet and satellite synoptic

3. Cryogenic design (1/3)

3. Cryogenic design (2/3)

Thermal shield

Thermal shield plate connected to first stage of cryocooler

Gas collector

liquid helium tube to cool bottom of current leads

liquid collector

cea

3. Cryogenic design (3/3)

Condenser connected to Second stage of cryocoolers Feed by the gas collector

Liquid helium Feeding pipe

Pressure exhaust tube (PED)

Liquid helium tube connected to bottom of current leads

HTS Current leads

4. Condenser – same principle as Venus (1/2)

4. Condenser – same principle as Venus (2/2)

Heat transfer coefficient for condensation process

Heat transfer in R-5 (condensation process) $h_l = 0.943 \left[\frac{\rho_l (\rho_l - \rho_v) g h_{fg} g k_l^3}{L \mu_l \Delta T} \right]^{0.25} = 1322 \text{ W/m}^2 \text{K},$ where ρ_l = liquid density, ρ_v = gas density, h_{fg} = latent heat, k_l = LHe thermal conductivity, L = length of fins in HX-2, and μ_l = liquid helium viscosity. **Experimental helium liquefier with a GM cryocooler**

Anup Choudhury; Santosh Sahu

Applied to our condenser, we have for **1** condenser:

- > 5 W as condensation if $\Delta T = 0.01$ K (very conservative)
- > 8.4 W as condensation if $\Delta T = 0.02$ K (average from litterature)

Considering 6 condensers with 1.8 W or 2 W absorbed at the second stage, we have enough margin for liquefaction (>>10 W)

5. Current leads

- HTS current leads to limit thermal losses
- Two current leads type:
 - 450 A for the sextupole (1 pair)
 - 210 A for the solenoids (3 pairs)
- One resistive part in brass 70/30 and one HTS part using commercial current leads
- 50 K stage cooled down by conduction
- 4.2 K stage cooled down by conduction through a LHe pipe

For brass 70/30

$$\dot{Q}_{L 450 A} = 22.46 W \text{ per CL}$$

 $\dot{Q}_{L 210 A} = 10.48 W \text{ per CL}$
 $\dot{Q}_{L total} = 107.81 W$
 $\dot{Q}_{L without I} = 12.1 * 2 + 5.7 * 6 = 58 W$

For the HTS part $\dot{Q}_{L 450 A HTS110} = 96 mW per CL$ $\dot{Q}_{L 210 A HTS110} = 60 mW per CL$

6. Thermal budget at 4 K with 6 cryocoolers (1/2)

Assumption: intercept at 50 K on cryocooler first stage				
	Q (W)	number	Q tot (W)	
Dynamic heat load	7	1	7	
Tie rods	0.18	8	1.44	
Current leads	0.096/0.06	2/6	0.552	
PED tube (with below)	0.07	1	0.07	
Radiation			0.2	
total (W)			~ 9.26 W	

Cryocooler: 1,8 W at 50 Hz or 2 W at 60 Hz
6 cryocoolers: 10,8 W or 12 W
20% margin -> 11.1 W of cooling power
Choice to be finalized

6. Thermal budget at 4 K with 5 cryocoolers (2/2)

Assumption: intercept at 50 K on cryocooler first stage				
	Q (W)	number	Q tot (W)	
Dynamic heat load	7	1	7	
Tie rods	0.18	8	1,44	
Current leads	0.096/0.06	2/6	0.552	
PED tube (with below)	0.07	1	0.07	
Radiation			0.2	
Failed cryocooler	0.76	1	0.76	
total (W)			~ 10 W	

Cryocooler: 1,8 W at 50 Hz or 2 W at 60 Hz
5 cryocoolers: 9 W or 10 W

Boundaries conditions

On the interface between the 8 tie rod And the helium tank (304L) 295.15 K On the extremity of the 2x12 spacers Ø 8 mm (Peek) In contact with the internal wall Of the vacuum vessel (304L)

Results

7. Thermal budget at 50 K - summary

Assumption: intercept at 50 K on cryocooler first stage				
	Q (W)	number	Q tot (W)	
Current leads	22.5/10.5	2/6	108	
Tie rods	3.3	8	26.4	
radiation			28	
Satellite tie rod	1.1	4	4.4	
spacers	0.26	24	6.24	
total (W)			~ 173 W	
Cryocooler: 42 W at 50 K				

- ➢ 6 cryocoolers: 252 W of cooling power available
- Estimated heat load: 173 W
- **> Margin: 31 %**

8. Cool down(1/2)

• <u>Rinses:</u>

- pumping by helium gas supply circuit and by PED outlet
- filling with helium gas by helium supply circuit
- 3 rinses considered, need for a mobile primary pumping group (12 m³, maximum vacuum at 5.10⁻³ mb) (use just for rinsing)

and 1 open/close)

8. Cool down (2/2)

<u>Cool down strategy:</u>

> Helium gas supply: 1 open/close valve for sealing and a regulation valve in series (Cv = 0.25)

- The control valve will adjust the flow of helium gas to maintain a pressure of 1.2 bar in the helium vessel: 1 regulation system foreseen
- The gas will cool via the condensers, the pressure will decrease and the difference in density between the cold gas and the hot gas will initiate a convection movement of the helium between the "liquid" collector and the "gas" collector.
- Cooling time estimated at 5/6 days

9. Instrumentation - summary

Equipment / sensors	number	
Liquid level sensors	4 (only 2 for operation)*	
Cernox	22	
PT100	22	
heaters	2 (+2)* (Lhe level regulation) + 4 (dynamic load)	
Pressure sensors	1 (digital) + 1 (with needle)	
Proportional valves	2	
Open/close valves	2	

*: even if it is redundant heaters or level sensors, it is foreseen to connect the wires up to the leak tight feedthrough if they need to be used. Thus, we can connect them outside and avoid magnet warm up to open the satellite.

10. CONCLUSIONS:

- The magnet is cooled by immersion in a liquid helium bath at 1.1 bars and 4.3 K
- The liquid is produced by condensers coupled to the second stage of cryocoolers
- The thermal screen is cooled by coupling with the first stage of cryocoolers
- The calculations and simulations show that we have enough margin with 6 cryocoolers:
 - > The maximum total heat load at 4 K is 9.3 W for a cooling power of 10.8 W (12 W also possible)
 - Simulation of thermal screen shows a heat load of 173 W on the first stages for 252 W available
- It is also possible to operate with 5 cryocoolers if one failed
- A system of pipes and valves has been design for the cool down and for the pressure regulation during operation
- The instrumentation has been design to have enough information for the cool down and the operation
- The system is protected from over pressure by a safety valve and a burst disc

Thank you

Questions?

