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• Forward model cost depend on 
physics processes of interest 

• Usually O(millions) core-hours over 
entire design parameter space 

• Critical: selection of design points
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• Data w/ correlated uncertainties: multiple (related) 
measurements from multiple experiments 

• ~500-1500 data points 
• Some info on uncert. correlations, but can only 

estimate full covariance (e.g. arXiv:2102.11337) 
• Aim inclusively, but also use differential selections 

for exploration + model dependence
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data
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data
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• So far, predominately 
standard/untuned packages 

• Compute time usually not prohibitive: 
• GP: (~seconds) 
• MCMC: (~hours-day)
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• Closure tests key for performance 
assessments 

• Also some interest in underlying GP 
(e.g. building intuition for parameter 
dependence)
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• Interest in: 
• Parameter extraction 
• Experimental design 
• Prediction further observables 

using e.g. MAP or full posterior 
• Refining prior distributions for 

next analyses
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