

# Novel Diagnostics: Current Activities and Milestones

M. Marchevsky, LBNL







## Alllb – Diagnostics and quench protection

**Diagnostics and instrumentation** are the basis for all magnet performance information obtained during magnet fabrication and testing and are central to the MDP mission. Multi-sensor diagnostics data obtained in the R&D magnet tests, coupled with AI/ML processing and advanced models, inform our understanding of magnet performance and guide technology improvements.

**Quench protection** is vital for safe and reliable magnet operation, and it fully relies on the early warning signals produced by the diagnostic and quench detection systems and instrumentation.





## Alllb: Main goals

#### LTS magnets

- Uncovering physical mechanisms responsible for premature quenching and training. Developing new diagnostics and analysis techniques to probe mechanical energy conversion into heat.
- Performing well-controlled small-scale experiments to better understand the transient thermo-mechanical phenomena and inform the search for new impregnation materials and techniques for future high-field LTS magnets.

#### HTS and hybrid magnets

- Developing techniques for real-time detection and localization of hot spots is of major importance. Different non-voltage sensing modalities (ultrasonic, RF-based, Hall sensors, fiber-optics) recently explored by the MDP need to be scaled up and integrated into prototype magnet coils to compare their efficiency.
- Techniques for in-situ localization of HTS conductor defects and quantifying current sharing in cables need to be developed
- Various novel quench protection techniques (CLIQ, active current control, smart insulation, etc.) must be explored further for use with hybrid high-field magnets of very large stored energy. Specifically, the interaction between LTS and HTS protection systems is a critical R&D topic for the hybrids. A robust, reliable, and self-consistent quench detection/protection solution for HTS and hybrid magnets is the ultimate goal.





- Addressing analysis of big diagnostic data from recent magnet tests with AI/ML. Identifying relevant data connected to magnet behavior and anomalies
- Understanding fundamental mechanisms of transient mechanics and associated heat deposition in LTS conductors and various magnet impregnation materials via small-scale experiments. Providing essential feedback to the MDP design and modeling effort
- Understanding under what conditions can we detect hot spots and safely protect HTS magnets? Developing hardware and software to address this challenge
- Pursuing integration of diagnostic instrumentation into magnets at the early stage of magnet design and construction. Improving communication and joint planning with other MDP groups.





## Diagnostics milestone table (2025-2027)

| Milestone # | Description                                                                                                                                                                                                                                                                                             | Status      | Updated Target                       | Requestor                                             | Comments                                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Allib-M1    | <ul> <li>a) Development of RF-based distributed thermal sensing</li> <li>b) Integration of the non-optical and distributed sensing (ultrasonic and RF) into prototype magnets</li> <li>c) Quench antenna development</li> </ul>                                                                         | In progress | Dec-25<br>Dec-26<br>ongoing – Dec 26 | M. Marchevsky,<br>S. Krave, J. Di Marco,<br>R. Teyber |                                                                                                                              |
| Allib-M2    | <ul> <li>a) Large-scale Hall array-based imaging and quenching studies for HTS tapes<br/>and cables.</li> <li>b) Quench-tolerant HTS conductor studies.</li> </ul>                                                                                                                                      | In progress | Dec-25<br>Dec-26                     | M. Marchevsky                                         | In collaboration with Polytechnique<br>Montreal                                                                              |
| AIIIb-M3    | Diagnostics magnet test / magnet test beds for diagnostics                                                                                                                                                                                                                                              | Started     | Jun-27                               | S. Stoynev                                            |                                                                                                                              |
| AIIIb-M4    | <ul><li>a) Development and test of MOSFET cryogenic current controls</li><li>b) Development of novel quench protection methods</li></ul>                                                                                                                                                                | Started     | Sep-25<br>ongoing – Dec 27           | M. Marchevsky                                         | +SBIRs                                                                                                                       |
| AIIIb-M5    | Development and test of a non-rotating new magnetic probe prototype                                                                                                                                                                                                                                     | In progress | Dec-25                               | J. DiMarco, M.<br>Marchevsky                          |                                                                                                                              |
| AIIIb-M6    | <ul> <li>a) Demonstration of a programmable fully-cryogenic FPGA "smart" sensor core with digital readout.</li> <li>b) Cryo-electronic data acquisition package development</li> </ul>                                                                                                                  | In progress | Aug-25<br>Jun-27                     | M. Turqueti, P. Joshi                                 |                                                                                                                              |
| Allib-M7    | <ul> <li>a) Energy spectrum analysis</li> <li>b) Coil azimuthal strain mapping</li> <li>c) Strain mapping using distributed fiber</li> <li>d) Temperature sensing / quench propagation tests with HTS</li> </ul>                                                                                        | In progress | Dec-25                               | M. Baldini, S. Krave                                  |                                                                                                                              |
| AIIIb-M8    | <ul> <li>a) Develop quality control capabilities to identify defects and performance limiting regions in REBCO cables and accelerator magnets.</li> <li>b) Advance numerical and experimental abilities to monitor and predict current distributions in ReBCO cables for accelerator magnets</li> </ul> | In progress | May-25<br>Dec-26                     | R. Teyber                                             | Direct feedback to HTS/CORC<br>magnet development. Seek to<br>exploit recent FES research<br>progress in HEP magnets. +SBIRs |
| Allib-M9    | <ul> <li>a) Small scale transient thermal energy deposition experiments.</li> <li>b) Development of thermal transient diagnostics instrumentation and data processing.</li> </ul>                                                                                                                       | In progress | Dec-25<br>Dec- 26                    | M. Marchevsky, A.<br>Saravanan                        |                                                                                                                              |

#### Allb-M1 Development of RF-based distributed thermal sensing



Focus on identifying best suitable insulation materials that exhibit substantial temperature dependence of the dielectric constant ore resistance in the entire RT - 4.2 K temperature range.

Various commercial and home-made coaxes using non-standard dielectric materials were tested and possible candidates for future developments identified

There are dielectrics that exhibit substantial  $\varepsilon(T)$  variations

Same dielectrics that exhibit substantial e(T) are usually also exhibit high losses at frequencies above 1 GHz, limiting spatial resolution of the potential sensor



U.S. MAGNET

PROGRAM

DEVELOPMENT

### Allb-M1 An experiment on a 4 m-long RF sensor at 7.5 K



U.S. DEPARTMENT OF Office of Science

U.S. MAGNET DEVELOPMENT

PROGRAM



Office of

Science

Allb-M1

1. TDR with ps-level time resolution. Measuring *time shift* instead of amplitude. Advantage: much higher spatial resolution, Immunity to parasitic capacitances, losses.



2. RF interferometer: a simple standalone hardware solution. High sensitivity and speed, inexpensive, but no localization.





### Integration of an ultrasonic waveguide sensor Allb-M1 into a prototype unilayer CORC<sup>®</sup> coil

#### Davide Cuneo (INFN), J.L. Rudeiros-Fernadez (LBNL)



- > Due for the beginning of March
- Test of the CORC cable (straight) to assess  $I_c$  at different field levels
- Winding of the CORC on the Uni-Layer mandrel (aluminum)
- Test of the degradation of the  $I_c$  due to the bending after winding
- Implementation of the acoustic waveguide on top of the conductor
- Test of the acoustic waveguide
- Future Development
- Development of a full mandrel with a secondary channel
- Implementation of the sensor on a secondary channel under the conductor (45 degrees channel)
- Test of the sensor in this last configuration

Office of Science



### Development of a high-current cryogenic Allb-M4 MOSFET driver



U.S. MAGNET DEVELOPMENT

PROGRAM

An assembled prototype board for 500+ A cryogenic use



20x GaN MOSFETs (30 A per, 2.5 m $\Omega$  at 77 K per device)







**U.S. MAGNET** 

PROGRAM

DEVELOPMENT

M. Marchevsky - ASC2024 - 2LOr2A-06

Office of

Science

U.S. DEPARTMENT OF

• Fast current control and quench detector

Allb-M2



Office of

Science

ENERGY

### Components of the experimental setup



AIIIb-M2

## Quench propagation imaging validated



**U.S. MAGNET** 

PROGRAM

DEVELOPMENT

Science

→ VT1-VT2  
→ VT2-VT3  
→ VT3-VT4  
→ VT3-VT4  
→ VT4-VT5  
→ VT5-VT6  

$$t_1=39.693 \text{ s}$$
  
 $t_2=39.7288 \text{ s}$   
 $t_3=39.7529 \text{ s}$   
 $t_4=39.8414 \text{ s}$   
 $v = \frac{\Delta l}{\Delta t} = 0.22 \text{ m/s}$ 

 $v_{23} = 0.0254/((t_2 - t_1) + (t_3 - t_1)) = 0.265 \text{ m/s}$  $v_{34} = 0.0254/(t_4 - t_2) = 0.225 \text{ m/s}$ 

We have measured quench propagation velocity in Current Flow Diverter – modified HTS conductors, and confirmed high NZPVs (~0.2 m/s) at moderate quench currents of ~40-45 A, in concert with the simulations.

M. Marchevsky - ASC2024 - 2LOr2A-06 The imaging mechanism still needs to be clarified

- Magnetization clearing?
- Nernst effect?

Nest step: adding array of thermometers/heaters to the setup. Test more CFD samples

183.5

-182

-181

180

-179.2

AIIIb-M2

### Allib-M9 The cryogenic measurement probe



U.S. DEPARTMENT OF Office of Science

**U.S. MAGNET** 

PROGRAM

DEVELOPMENT



Office of

Science

ΞN

Acoustic emission and temperature rise associated Allb-M9 with the de-bonding and slip-stick events



- Add high-resolution displacement sensor and heater for calorimetry calibration
- Test more samples / other epoxies (Mix61, Stycast, wax, Telene (?)