

Update on the fiber R&D at Fermilab

Outline

- Quench propagation study using temperature fiber sensor
 - Barrel Samples: Nb3Sn and REBCO
 - Test with a REBCO STAR cable
 - Short term plan

Quench propagation on REBCO tape

MDP collaboration meeting: results from a test performed at 4.5 K inducing a quench on Nb3Sn wire with a spot heater Promising results but we did not have good electrical contact. Quench was a violent event

- REBCO superconducting tape from Faraday Factory was wrapped around a barrel
- Voltage taps and strain gages were soldered onto the tape
 - Strain gage = spot heater
 - Voltage tap
- Temperature sensor wrapped on top of the tape
 - Maximum contact
 - Gage locations were recorded
 - Staycast was applied afterward

REBCO tape by FF Copper thickness: 20 um Substrate thickness: 40 um YBCO= 2.5 um Width= 4 mm

REBCO test with fibers

TEST plan overview

Temperature: 4.5 K, test different magnetic Field: 12T, 15T

Determine critical current

Minimum quench power at several current levels: (80%, 60%, and 40% of IC)

Work performed by Emily Spreitzer undergraduate student at NIU

TEST 1

- Critical Current = 340A. The tape quenched at a lower current than expected and then it was degraded
- Numerous current tests were attempted
- The experiment was unsuccessful: we did not observe any temperature variation on the fiber

REBCO test #2

Test Run	Current (A)	Magnetic Field (T)	Gage Pitch (mm)	Sample Rate (Hz)	Spot Heater (Y or N)	Spot Heater Pulse (ms)
1	650 (IC)	12	2.6	160	Ν	-
2	160	12	2.6	160	Y	30
3	100	12	2.6	160	Y	30, 40
4	100	12	2.6	160	Y	30, 40
5	100	12	2.6	160	Y	40
6	100	12	2.6	160	Y	40
7	120	12	2.6	160	Y	40

Gage #	Location(m)	
1	4.461	
2	4.603	
3	4.699	 SH: 1
4	4.811	
5	4.916	
6	5.020	
7	5.125	
8	5.229	SH: 2
9	5.334	

• The red dots indicate the spot on the fiber where the gage positions were recorded

REBCO Test: critical current measurements

- Ramp to IC = 650A
- No clear voltage rise in the data
- The quench start propagated at the end of the barrel

REBCO Test: critical current measurements

3 seconds of data during quench at IC

Data collected every 12 ms Heat propagation began at the end of the barrel

T variation is large~ 242 K

Fiber length (m)

REBCO TEST with spot heater

- Ramp to 80% of IC (I = 580 A) found in first test
- Quenched at ~ 160 A: sample was degraded after the first quench
- Similar to run #1, quench propagated from the end of the barrel

50

REBCO TEST with spot heater

- By this point, the tape was degraded from the previous runs
 - Current = 120A
- Spot Heater (strain gage)
 - Location 4.58m on the fiber
 - Current = 0.1A
 - Voltage = 35V
 - Resistance = 350Ω
 - Pulse = 40ms
- Temperature pulse $\Delta T = 13.7 \text{ K}$
 - Did not induce a quench, but the pulse can clearly be seen with the temperature fiber
- Power = 3.5W

Nb₃Sn test

- Two spot heaters 1 and 2 were attached, each with the same resistance:
 - R = 350Ω
- 10 fiber positions onto each turn of the fiber.
- Magnetic Field: 15T, 12T
- To begin this test, current was increased at a rate:1A/s to reach the critical current of this conductor sample
 - IC: 360A
- 40 runs, run 1 and run 24 are the ramp to IC at different magnetic fields (12T and 15T)
 - Data is still under review
- Minimum quench power tests done at different magnetic field and current levels

Nb3Sn test: 15T, 80% Ic

• Current ~ 290A

U.S. DEPARTMENT OF Office of Science

- Spot heater pulse length remained constant
- Spot heater 1 requires larger power to quench the sample
- Temperature increase is better seen on the one half of the barrel.

12/18/2024

Nb3Sn test: 15T, 60% and 40% Ic

40% IC ~ 144A

Spot Heater	Pulse (μs)	Current (A)	Power (W)	Quench (Y/N)	ΔT? (K)
2	200	0.12	5.04	N	-
2	200	0.13	5.92	N	-
2	200	0.14	6.86	N	-
2	200	0.15	<mark>7.875</mark>	Y	6.5

Spot Heater	Pulse (μs)	Current (A)	Power (W)	Quench (Y/N)	ΔΤ? (K)
2	200	0.20	14	Ν	-
2	200	0.21	<mark>15.44</mark>	Y	4.6
2	200	0.22	16.94	Y	4.45

Minimum quench power

- Current vs Power
- Current vs DT
 - Higher current will produce a greater change in temperature from quench
 - Can detect small temperature changes

REBCO STAR wire in liquid N (October 24)

Fiber without Kapton

- RUN 1: up to 700A
- RUN 2: Up to 500 A
- RUN 3: Up to 600 A
- RUN 4: Up to 750 A

Fiber with Kapton

- The cable and the fiber were wrapped in a kapton layer with sticky kapton holding it in place.
- RUN 1: up to 500 A,
- RUN 2: Up to 600 A
- RUN 3: Up to 750 A
- RUN 4: up to 650 A holding the current at 650 A for two minutes.

No signal observed with the fibers

Experiment with STAR wire in liquid N

	Test no.	Fixed Voltage Threshold	Current reached			
	1	1mV	600A			
	2	5mV (stayed for a while at 646 A)	695A			
	3	10mV	695A			
	4	20mV	695A			
V-I plot for different channels	5	50mV	700A			
0.0035 0.0025 0.0025 0.0015 0.00005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0	Work p Panda	Work performed by Sai Srinivas Ganesh Panda				
	0000					

Conclusion

- Three tests were performed using fiber optics:
- Two tests in liquid He with fibers installed on REBCO tape and Nb3Sn strands.
- Test on wax impregnated REBCO STAR wire in liquid N
- REBCO tape results
 - Quench at IC was clearly observed
 - Tape was degraded from IC run
 - Tests with a spot heater were inconclusive because samples were degreaded
- Nb3Sn sample
 - Minimum quench power and change in temperature could be estimated with the fiber data
 - Repeat test with synchronization. How fast
- STAR wire in liquid N
 - No Temperature variations observed. Power is probably to low

Fiber optics: to do list

Strain map during test of Nb3Sn CCT magnets

Plenty of data to analyze

Strain map during welding of AUP coldmass 2 to 4

SHORT TERM PLAN

- Tests in liquid N with STAR wire in heat shrink
- Install a spot heater and see if we can observe the heat pulse in liquid nitrogen
- STAR wire installed on a barrel in liquid He
- Use non performing COMB STAR coil as a test bed

 Perform quench propagation study on 1 m long REBCO tape and compare with simulation with QLASA