NSD: State of the Division

- Overview
- Our science
- Our people

Office of

Science

- An important safety reminder
- State of our funding

Major Programs in the NSD

Fundamental Symmetries and Neutrinos

Applied Nuclear Physics

88-Inch Cyclotron

Nuclear Theory

NSD Organization

BERKELEY LAB

CCC

Applied Nuclear Physics

Approximately \$8.8M. Funding from NNSA, DNDO, DTRA, DARPA, JAEA 16 grad students, 3 undergrad, 1.5 postdocs, 15 scientists Led by Kai Vetter (joint LBNL & UCB Nuclear Engineering)

QUOTE at Director's Review: We could have written the entire LRP Applications chapter based on this group's work!

Office of

Science

In-Situ Sr-90 detection and quantification Utilizing Compact Coplanar Grid CdZnTe Detector

CdZnTe detectors in co-planar grid implementation provides ability to detect Sr-90 to < 1uCi/m² (10% of DRL) in <60 minutes in a mobile lab.</p>

- Combination of gamma- and beta- measurements enable effective means to differentiate and estimate gamma- and beta-emitting isotopes such as Cs-134/137 and beta-only emitting isotopes such as Sr-90/90.
- Assessment of Sr-90 can be done in the field not requiring lengthy process;

Localizing and visualizing neutron sources in 3D

- CLLBC (Cs₂LiLa(Br,Cl)₆:Ce scintillator) enables the accurate detection and identification of gamma-ray sources and the efficient detection of neutron sources, relevant in the detection and mapping of SNM, such as Pu-239;
- The combination with SDF enables the 3D localization of neutron sources in a hand-portable format or on sUAS;

STAR probes quark gluon plasma with charm quarks

New Heavy Flavor results from STAR HFT:

- 1. Significant D⁰/D⁰bar v₁ at RHIC - probing QGP longitudinal properties
 - probing initial magnetic field
- 2. Significant enhancement in Λ_c⁺/D⁰ in HI coll.
 coalescence hadronization for charm quarks
 significance of Λc contribution to total charm cross section

ALICE is upgrading the inner tracker

Intermediate layers are assembled at LBNL:

- Stave production in progress
- Staves arriving at CERN every two weeks with minimal casualties
- We are on schedule!

finishing touches

ready to go

leaving LBNL

on board UNITED

MVTX inner tracker in sPHENIX

Physics goals: precision measurement of open bottom mesons

- heavy quark diffusion coefficient
- mass hierarchy of parton energy loss

We have seen that the heavy charm quark loses energy & flows What about the even heavier bottom quark??? What changes with the temperature of the plasma?

X.Dong co-convener of Heavy Flavor PWG in sPHENIX G.Odyniec – deputy project manager for the MVTX

Medium Energy Physics

Ernst Sichtermann + Maria Zurek (+Kolomensky, Mei)

Science

* W for polarized sea asymmetry program completed (milestone HP8)

- * $\Delta \bar{u} > \Delta \bar{d}$ opposite from unpolarized sea
- * hyperon DLL published

EIC:

 Scientific goals and measurement design underway

JLAB:

- Moller experiment joined, together with Kolomensky (UCB) and Mei
- Postdoc search now

California Consortium

Build part of EIC detector in California!

UCDAVIS

UNIVERSITY OF CALIFORNIA

os Alamos

Lawrence Livermore National Laboratory

- Expertise in tracking & calorimetry
- Just received UC MRPI funding to get started!
- Funding is "not much, but hard to get"
- 2 grad students for 2 years to work on EIC simulations + 2 workshops/yr
 Also plan joint postdoc hire with Stony Brook CFNS

Theory Highlights

The merger aftermath

In this simulation, the collision of two neutron stars has left behind a newly formed black hole and a whirlpool of magnetized gas orbiting around it. While some gas is eaten by the black hole, some matter emerges in energetic jets and winds, within which heavy elements will be synthesized and flashes of detectible light emitted

Another theoretical topic

Snowballs in Hell: Explaining Light Ion Production in High-Energy Collisions

Featured in Physics Editors' Suggestion

Microscopic study of deuteron production in PbPb collisions at $\sqrt{s}=2.76~{\rm TeV}$ via hydrodynamics and a hadronic afterburner

Dmytro Oliinychenko, Long-Gang Pang, Hannah Elfner, and Volker Koch Phys. Rev. C **99**, 044907 (2019) – Published 11 April 2019

Physics Synopsis: Explaining Light Ion Production in High-Energy Collisions

Pions could catalyze reactions between protons and neutrons, allowing the stable production of Deuterons in high-energy ion-ion collisions. Show Abstract +

First Spectroscopy of the Near-Drip-Line Nucleus ⁴⁰Mg

Editors' Suggestion

- First gamma-ray spectroscopy of near-drip-line (weakly bound) nucleus
 ⁴⁰Mg was performed at RIBF, RIKEN
- Gamma-ray spectrum is very different to neighboring ^{36,38}Mg
 - First dramatic change in nuclear structure near dripline
 - not reproduced by theory
 - evidence for a modification of structure due to weak binding

PRL Editors Suggestion

First Spectroscopy of the Near-Drip-Line Nucleus ⁴⁰Mg

H. L. Crawford,^{1,*} P. Fallon,¹ A. O. Macchiavelli,¹ P. Doornenbal,² N. Aoi,³ F. Browne,² C. M. Campbell,¹ S. Chen,² R. M. Clark,¹ M. L. Cortés,² M. Cromaz,¹ E. Ideguchi,³ M. D. Jones,^{1,†} R. Kanungo,^{4,5} M. MacCormick,⁶ S. Momiyama,⁷ I. Murray,⁶ M. Niikura,⁷ S. Paschalis,⁸ M. Petri,⁸ H. Sakurai,^{2,7} M. Salathe,¹ P. Schrock,⁹ D. Steppenbeck,⁹ S. Takeuchi,^{2,10} Y. K. Tanaka,¹¹ R. Taniuchi,⁷ H. Wang,² and K. Wimmer⁷

Office of

Science

First Mass Number Identification of Mc (Z=115) with FIONA

Observed two alpha decay chains, one from ²⁸⁸115 and one from ²⁸⁴113

Synopsis: Pinning Down Superheavy Masses

November 28, 2018

A new measurement technique directly determines the masses of two superheavy isotopes, providing confirmation that previous indirect measurements were correct.

PRL Editors Suggestion

The Gamma-Ray Energy Tracking Array: GRETA

GRETA is a 4π tracking detector capable of reconstructing the energy and threedimensional position of γ -ray interactions

Key Properties

- full solid angle coverage and high efficiency
- excellent energy and position resolution
- good background rejection (peak-to-total)

Design & module procurement underway!

GRETA Project

- 18 Quad Modules (+12 from GRETINA)
- Electronics, Computing, Mechanical Systems for 30 Quad Modules
- Tailored for CD-4A phased approach for early physics @ FRIB

A key detector for FRIB

Search for Element 120 at 88" Cyclotron?

50

249

251**Cf**

Reactions:

- ⁵⁰Ti + ²⁴⁹Cf → decay chain is unknown
- ⁵⁰Ti + ²⁵¹Cf \rightarrow decays to already known isotopes

Berkeley Gas-filled Separator

ЗR

Science

A new production route for ²²⁵Ac using secondary neutrons

- We are developing a new production mode for ²²⁵Ac via the 226 Ra(n,2n)²²⁵Ra $\xrightarrow{\beta-decay}{225}$ Ac using deuteron break-up neutrons that is free of contamination from long-lived ²²⁷Ac and La fission fragments
- ²²⁵Ac is a promising therapeutic radionuclide, but its production is difficult and radiochemical contaminants could limit its use.
- Our approach could provide a clean production route for many more diagnostic and therapeutic radionuclides.

UC student-led effort

HEIFER target holder

Patent Application Underway

RGY Office of Science

New Ion Source proposed

Office of

Science

MARS will have NbTi closed-loop sextupole windings

 $\uparrow \qquad \uparrow \\ E/A = k (q/A)^2$

- Higher charge-state ions
 going into the cyclotron
 means higher energy
 beams at the output
- MARS allows for higher beam intensities than previous ion sources by a factor of 5 (for ions with the same charge state)
- An additional ion source adds redundancy, which reduces failure time

3D view of MARS windings

We bring a lot to the search for neutrinoless $\beta\beta$ decay

Semiconductor Detector Lab (Applied Nuclear Physics)

CHESS

Class-100 cleanroom

NERSC (PDSF,

Cori

Nuclear Science

1 50

Dilution fridge (UCB)

Nanofab lab (UCB)

CUPID – LBNL is US lead lab!

TES characterization, LD calibration - B. Welliver,

TES multiplexing - B. Welliver (NSD), A. Suzuki (PD), S. Zimmermann (ENG)

CUPID-Mo data analysis at NERSC B. Schmidt

Science

SNO+

Quantum information science: NP call for proposals

RIKEN-Berkeley QIS conference

Theory

Quantum annealing for polynomial systems of equations

Chia Cheng Chang (張家丞),^{1,2,3,*} Arjun Gambhir,⁴ Travis S. Humble,⁵ and Shigetoshi Sota⁶ ¹Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ²Department of Physics, University of California, Berkeley, California 94720, USA ³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁴Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA ⁵Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁶Computational Materials Science Research Team, RIKEN Advanced Institute for Computational Science (AICS), Kobe, Hyogo 650-0047, Japan

Low power TIA (to replace SQUID?)

Office of Science

Award Winners

Kathryn Meehan: Gertrude Goldhaber Prize

Grazyna Odyniec: APS Fellow and Women @The Lab 2018

Lynen Fellows from Humboldt Foundation: Christian Drischler, Christopher Körber Michael Willers

<mark>Barbara Jacak</mark> Bonner Prize

Dan Kasen: Bruno Rossi Prize of the High Energy Astrophysics Division, AAS, 2019

Office of Science

Welcome

To our new NSD members!

- New postdocs
- New graduate students
- Summer students

A quick safety note

- We have a two-person rule for work in the lab by students
- Postdocs should also follow this rule
- Best for staff, also, not to work alone

Funding by Program FY19 (\$K)

U.S. DEPARTMENT OF

ヨス

Office of

Science

FY2020 outlook

House proposed budget

- Looks good for NP (increase; follows Long Range Plan)
- FRIB construction tailing off (generates some funds)

Uncertainties remain

- Senate mark is awaited
- Guidance is to expect a continuing resolution

Applications funding looks robust

ANP group is looking for postdocs!

Science enabled by LBNL LDRD

Recent Scientific outcomes

- Mass measurements of Mc, Nh
- Key roles in LEGEND $0\nu\beta\beta$ collaboration
- Heavy element production in neutron star mergers
- New program at Jefferson Lab
- New eSTARlight Monte Carlo event generator
- Jet physics at EIC

Future Scientific outcomes

- Next generation Ge detectors & low noise electronics in basic and applied research
- LQCD short range correlations for $0\nu\beta\beta$ decay studies
- Light collection techniques for LEGEND veto
- Machine learning applied to heavy ion collisions

Elements

1 H																			2 He												
3	4			E	leme	ents	pre	vio	usly	acc	ele	rate	d by	the	88-	Incl	ו Cy	v <mark>clo</mark> t	tron							5	6	7	8	9	10
Li	Elements discovered by Berkeley Lab																	В	С	Ν	0	F	Ne								
11	12																			13	14	15	16	17	18						
INA	Mg	_																	AI	Si	Р	S	CI	Ar							
19	20	21	22 23 24 25 26 27 28 29 3															30	31	32	33	34	35	36							
<u> </u>	Са	Sc		Ti V Cr Mn Fe Co Ni Cu Zn G															Ga	Ge	As	Se	Br	Kr							
37	38	39		40 41 42 43 44 45 46 47 48															48	49	50	51	52	53	54						
RD	Sr	Y		Zr Nb Mo Tc Ru Rh Pd Ag Cd															In	Sn	Sb	Те	I	Xe							
55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

Semiconductor Lab

Segmented HPGe Detectors

MAJORANA DEMONSTRATOR

- Electronic noise
- Efficiency
- Background rejection

Nuclear Science

GRETA/GRETINA In-beam Spectroscopy FIONA, FRIB

- Position resolution
- Count rate
- Efficiency

BERKELEY LAB

88-Inch Cyclotron: Dual Mission

- National center for <u>Superheavy element research</u>
- Key provider of <u>Nuclear Data</u> supporting work in energy, medicine & security Student education/workforce development in both areas
- Leading facility for <u>space effects measurements</u> for US and commercial space & aeronautics communities: Air Force/NASA/industry
- Ion Source development is a core capability!

VENUS performance leading, but...

FRIB needs very high intensity high-charge-state beams.

Low emittance beams for high intensity transmission (super heavy studies)

Collaboration with MSU ²³⁸U³³⁺ : 430 µA

- Next generation ECR ion source at "older" facilities could be a path forward for increased heavy ion use
- UC Davis
- TAMU

