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Large-momentum effective theory

• Quasi-PDF: 
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q̃(x, Pz)

• Ji, PRL110 (2013); 
• Ji, SCPMA57 (2014).

PDF          : 
Cannot be calculated on the lattice

Quasi-PDF               : 
Directly calculable on the lattice

q(x)

q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

• Xiong, Ji, Zhang and Y.Z., PRD90 (2014); 
• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).
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• Ji, PRL110 (2013); 
• Ji, SCPMA57 (2014).

PDF          : 
Cannot be calculated on the lattice

Quasi-PDF               : 
Directly calculable on the lattice

q(x)

Related by Lorentz boost

q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

• Xiong, Ji, Zhang and Y.Z., PRD90 (2014); 
• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).
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Quasi-TMDPDF
• Definition:
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f̃ TMD
q (x, ⃗b T, μ, Pz) = ∫

dbz

2π
eibz(xPz)Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ, a)

B̃q(bz, ⃗b T, a, L, Pz)

S̃q(bT, a, L)

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);  
• M. Ebert, I. Stewart, Y.Z., PRD99 (2019); 
• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

Lorentz boost and L → ∞b⊥

t
z

q

q

b+

b⊥

t
z

q

q

bz

L

Pz

Pz

∞

∞

B̃q(bz, ⃗b T, a, L, Pz)Bq(x, ⃗b T, ϵ, τ, xP−)

: rapidity regulatorτ
: UV regulatorϵ
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Quasi-TMDPDF
• Definition:
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f̃ TMD
q (x, ⃗b T, μ, Pz) = ∫

dbz

2π
eibz(xPz)Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ, a)

B̃q(bz, ⃗b T, a, L, Pz)

S̃q(bT, a, L)

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);  
• M. Ebert, I. Stewart, Y.Z., PRD99 (2019); 
• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

b⊥

t
z

b⊥

t
z

L

Cannot be related by 
Lorentz boost

Naive S̃q(bT, a, L)Sq(bT, ϵ, τ)
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Quasi-TMDPDF
• Definition: 

• Relationship to the physical TMDPDF:
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f̃ TMD
q (x, ⃗b T, μ, Pz) = ∫

dbz

2π
eibz(xPz)Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ, a)

B̃q(bz, ⃗b T, a, L, Pz)

S̃q(bT, a, L)

f̃ TMD
ns (x, ⃗b T, μ, Pz) = CTMD

ns (μ, xPz) gS
q(bT, μ) exp[ 1

2
γq
ζ (μ, bT)ln

(2xPz)2

ζ ]

Perturbative matching coefficient
Nonperturbative function for 
large bT, depending on the 
choice of the quasi-soft factor

CTMD
ns (μ, xPz)

gS
q(bT, μ)

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);  
• M. Ebert, I. Stewart, Y.Z., PRD99 (2019); 
• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

× f TMD
ns (x, ⃗b T, μ, ζ)+𝒪 ( bT

L
,

1
bTPz

,
1

PzL )bz ∼
1
Pz

≪ bT ≪ L

b⊥

x

-z

L

y

L

gS
q(bT, μ) = 1 + 𝒪(α2

s )

• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.
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Collins-Soper kernel of TMDPDF from 
lattice QCD
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γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

2)

b⊥

t
z

q

q

bz

L

Quasi beam function  
(or unsubtracted quasi-TMD)

The idea of forming ratios to cancel the soft function has been used in the 
calculation of x-moments of TMDPDFs by 
Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), 
PRD93 (2016), arXiv:1601.05717, PRD96 (2017)

• M. Ebert, I. Stewart, Y.Z., PRD99 (2019); 
• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037; 
• M. Ebert, I. Stewart, Y.Z., in progress.
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Collins-Soper kernel of TMDPDF from 
lattice QCD
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work in progress with  

Phiala Shanahan (MIT) and Michael Wagman (MIT).

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

2)

b⊥

t
z

q

q

bz

L

Collins-Soper (CS) kernel does not depend on the external hadron state, which means that one can 
calculate it with a pion state including heavier than physical valence quarks.

Quasi beam function  
(or unsubtracted quasi-TMD)

• M. Ebert, I. Stewart, Y.Z., PRD99 (2019); 
• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037; 
• M. Ebert, I. Stewart, Y.Z., in progress.
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Procedure of lattice calculation

• 1. Lattice simulation of the bare quasi-beam function
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γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

2)

!4

LQCD Setup

Independent of hadron state, choice of momenta, choice of 

…up to power corrections:             ,                       ,          

bz
<latexit sha1_base64="jVnEqJTH360Mj21pMDXcwhrAvkY=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQFXRbduKxgH9CGMJnetEMnkzAzEWvIr7hxoYhbf8Sdf+M0zUJbD1w4nHPv3LknSDhT2nG+rZXVtfWNzcpWdXtnd2/fPqh1VJxKCm0a81j2AqKAMwFtzTSHXiKBRAGHbjC5mfndB5CKxeJeTxPwIjISLGSUaCP5di0bFI9kAU8hx4H/lPt23Wk4BfAycUtSRyVavv01GMY0jUBoyolSfddJtJcRqRnlkFcHqYKE0AkZQd9QQSJQXlaszfGJUYY4jKUpoXGh/p7ISKTUNApMZ0T0WC16M/E/r5/q8MrLmEhSDYLOF4UpxzrGsyDwkEmgmk8NIVQy81dMx0QSqk1cVROCu3jyMumcNdzzhnN3UW9el3FU0BE6RqfIRZeoiW5RC7URRY/oGb2iNyu3Xqx362PeumKVM4foD6zPH6CzlM8=</latexit>

bT
<latexit sha1_base64="ELCTPZ+pGavDr5eKE+rfZBwRzxQ=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KooMeiF48V2lpoQ9hsN+3SzSbsbsQS8le8eFDEq3/Em//GbZqDtj4YeLw3s7PzgoQzpR3n26qsrW9sblW3azu7e/sH9mG9p+JUEtolMY9lP8CKciZoVzPNaT+RFEcBpw/B9HbuPzxSqVgsOnqWUC/CY8FCRrA2km/Xs2HxSBbwlOYo8Du5bzecplMArRK3JA0o0fbtr+EoJmlEhSYcKzVwnUR7GZaaEU7z2jBVNMFkisd0YKjAEVVeVqzN0alRRiiMpSmhUaH+nshwpNQsCkxnhPVELXtz8T9vkOrw2suYSFJNBVksClOOdIzmQaARk5RoPjMEE8nMXxGZYImJNnHVTAju8smrpHfedC+azv1lo3VTxlGFYziBM3DhClpwB23oAoEneIZXeLNy68V6tz4WrRWrnDmCP7A+fwBm9ZSp</latexit>

⌘
<latexit sha1_base64="Vf5SUn5v/69EBDV6BHz/SiDLV2U=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiQq6LLoxmUF+4AmlMn0ph06mYSZiVBC/BU3LhRx64e482+cpllo64ELh3PunTv3BAlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjropTSaFDYx7LfkAUcCago5nm0E8kkCjg0Aumt3O/9whSsVg86FkCfkTGgoWMEm2koV3PvOKRLOAp5NgDTfKh3XCaTgG8StySNFCJ9tD+8kYxTSMQmnKi1MB1Eu1nRGpGOeQ1L1WQEDolYxgYKkgEys+KvTk+NcoIh7E0JTQu1N8TGYmUmkWB6YyInqhlby7+5w1SHV77GRNJqkHQxaIw5VjHeJ4EHjEJVPOZIYRKZv6K6YRIQrXJq2ZCcJdPXiXd86Z70XTuLxutmzKOKjpGJ+gMuegKtdAdaqMOomiGntErerOerBfr3fpYtFascqaO/sD6/AFXE5U0</latexit>

�q,MS
⇣ (bT , µ) = ⇣

d

d⇣
fMS
q (x, bT , µ, ⇣)

<latexit sha1_base64="M9gvajAV7iY5gt+jyO9rdH1OzBs="></latexit>

=
1

ln(pz1/p
z
2)

ln
CMS

TMD(µ, xP
z
2 )

R
dbzeib

zxpz
1 eBMS

q (bz, bT , ⌘, µ, pz1)

CMS
TMD(µ, xp

z
1)

R
dbzeibzxp

z
2 eBMS

q (bz, bT , ⌘, µ, pz2)
<latexit sha1_base64="e0HGklh56r/I2LFYqjmmD75JDt0="></latexit>

Exploit independence, 
calculate for valence pion 
with 

bT /⌘
<latexit sha1_base64="69wzNtbB6blpqQaZ9ANR5t1EsfY=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU01U0GPRi8cK/cI2lM120i7dbMLuRCih/8KLB0W8+m+8+W/ctjlo9cHA470ZZuYFiRQGXffLKaysrq1vFDdLW9s7u3vl/YOWiVPNocljGetOwAxIoaCJAiV0Eg0sCiS0g/HtzG8/gjYiVg2cJOBHbKhEKDhDKz0E/QY9oz1A1i9X3Ko7B/1LvJxUSI56v/zZG8Q8jUAhl8yYrucm6GdMo+ASpqVeaiBhfMyG0LVUsQiMn80vntITqwxoGGtbCulc/TmRsciYSRTYzojhyCx7M/E/r5tieO1nQiUpguKLRWEqKcZ09j4dCA0c5cQSxrWwt1I+YppxtCGVbAje8st/Seu86l1U3fvLSu0mj6NIjsgxOSUeuSI1ckfqpEk4UeSJvJBXxzjPzpvzvmgtOPnMIfkF5+MbPkSP+g==</latexit>

1/(pzbT )
<latexit sha1_base64="Q4+fMjCu+Wod9t4vaCKDQqD8XKs=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL3VXBT0WvXis0C9o15JNs21oNlmSWaEu/RlePCji1V/jzX9j2u5BWx8MPN6bYWZeEAtuwHW/ndzK6tr6Rn6zsLW9s7tX3D9oGpVoyhpUCaXbATFMcMkawEGwdqwZiQLBWsHoduq3Hpk2XMk6jGPmR2QgecgpASt1vLNy/PCEg179tFcsuRV3BrxMvIyUUIZar/jV7SuaREwCFcSYjufG4KdEA6eCTQrdxLCY0BEZsI6lkkTM+Ons5Ak+sUofh0rbkoBn6u+JlETGjKPAdkYEhmbRm4r/eZ0Ewms/5TJOgEk6XxQmAoPC0/9xn2tGQYwtIVRzeyumQ6IJBZtSwYbgLb68TJrnFe+i4t5flqo3WRx5dISOURl56ApV0R2qoQaiSKFn9IreHHBenHfnY96ac7KZQ/QHzucPg4aQGA==</latexit>

M/pz
<latexit sha1_base64="gyRaoK6fcXvI/bc3De1aIqX+7yY=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU91VQY9FL16ECm5baNeSTbNtaDZZkqxQl/4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53C0vLK6lpxvbSxubW9U97da2iZKkJ9IrlUrRBrypmgvmGG01aiKI5DTpvh8HriNx+p0kyKezNKaBDjvmARI9hYyb89SR6euuWKW3WnQIvEy0kFctS75a9OT5I0psIQjrVue25iggwrwwin41In1TTBZIj7tG2pwDHVQTY9doyOrNJDkVS2hEFT9fdEhmOtR3FoO2NsBnrem4j/ee3URJdBxkSSGirIbFGUcmQkmnyOekxRYvjIEkwUs7ciMsAKE2PzKdkQvPmXF0njtOqdVd2780rtKo+jCAdwCMfgwQXU4Abq4AMBBs/wCm+OcF6cd+dj1lpw8pl9+APn8wd0245y</latexit>

m⇡ ⇠ 1.2 GeV
<latexit sha1_base64="EQknpcKHjoG3NPAPc4ruxSSYvHo=">AAACAnicbVDLSgNBEJyNrxhfUU/iZTAInsJuFPQY9KDHCOYB2RBmJ51kyMzuMtMrhiV48Ve8eFDEq1/hzb9x8jhoYkFDUdVNd1cQS2HQdb+dzNLyyupadj23sbm1vZPf3auZKNEcqjySkW4EzIAUIVRRoIRGrIGpQEI9GFyN/fo9aCOi8A6HMbQU64WiKzhDK7XzB6rtx4L6RijqFUs+wgOm9Bpqo3a+4BbdCegi8WakQGaotPNffifiiYIQuWTGND03xlbKNAouYZTzEwMx4wPWg6alIVNgWunkhRE9tkqHdiNtK0Q6UX9PpEwZM1SB7VQM+2beG4v/ec0EuxetVIRxghDy6aJuIilGdJwH7QgNHOXQEsa1sLdS3meacbSp5WwI3vzLi6RWKnqnRff2rFC+nMWRJYfkiJwQj5yTMrkhFVIlnDySZ/JK3pwn58V5dz6mrRlnNrNP/sD5/AG385ZZ</latexit>

Not independent of sea quark mass, 
quenched gauge fields used for 
exploratory calculation 

x
<latexit sha1_base64="T81e0FN4eiLN0l7csieDRUgh6Jc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix68diC/YA2lM120q7dbMLuRiyhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveRcWtX5arN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD5uOM/g==</latexit>

Variation of        probes 
power corrections

m⇡
<latexit sha1_base64="O2UScV7hb2SyqhzsV63WC/iMZiM=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4ruG2hXUo2zbahSTYkWaEs/Q1ePCji1R/kzX9j2u5BWx8MPN6bYWZerDgz1ve/vdLa+sbmVnm7srO7t39QPTxqmTTThIYk5anuxNhQziQNLbOcdpSmWMSctuPx3cxvP1FtWCof7UTRSOChZAkj2DopFP2eYv1qza/7c6BVEhSkBgWa/epXb5CSTFBpCcfGdANf2SjH2jLC6bTSywxVmIzxkHYdlVhQE+XzY6fozCkDlKTalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm9xEOZMqs1SSxaIk48imaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiWti3pwWfcfrmqN2yKOMpzAKZxDANfQgHtoQggEGDzDK7x50nvx3r2PRWvJK2aO4Q+8zx/SSY6v</latexit> = L

bz ∼
1
Pz

≪ bT ≪ η <
LLat

2
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Procedure of lattice calculation

• 2. Renormalization and conversion to the MSbar scheme

�10

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

2)

Z̃UV(bz, μ̃, a)Nonperturbative Renormalization:

Z̃′�(bz, μ, μ̃)Conversion to MSbar scheme:
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Procedure of lattice calculation

• 3. Fourier transform and calculate the ratio at different Pz

�11

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

2)
• Independent of the choice of x! 
• Independent of Pz! 
• One may still seek alternatives to Fourier transforms that can be done 

directly in coordinate space.

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

ln
∫dbz C̄ns(μ, y − bzPz

1, Pz
1)f̃ns(bz, ⃗b T, μ, Pz

1)

∫dbz C̄ns(μ, y − bzPz
2, Pz

2)f̃ns(bz, ⃗b T, μ, Pz
2)

C̄ns(μ, bzPz, Pz) = ∫dx e−ix(bzPz) [Cns(μ, xPz)]
−1

• M. Ebert, I. Stewart, Y.Z., in progress.
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Renormalizability

• Renormalization in the continuum theory:

�12

𝒪Γ
0(bμ, L) ≡ q̄0(bμ)W ̂z

Γ
2

WTW†
̂z q0(0)

= Zq,Weδm(L+|L−bz|+bT)(q̄(bμ)W ̂z
Γ
2

WTW†
̂z q(0))R

≡ Z̃𝒪(q̄(bμ)W ̂z
Γ
2

WTW†
̂z q(0))R

Can be proved using the auxiliary field formalism.

• X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);  
• J. Green et al., PRL121 (2018); 

𝒪Γ
0(bμ, L) ≡ ⟨q0(bμ)ΓQ1(bμ)Q̄1(∞, bT)Q2(∞, bT)

× Q̄2(∞,0T)Q3(∞,0T)Q̄3(0)q0(0)⟩Q1,Q2,Q3
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Operator mixing

• Renormalization on the lattice (with broken chiral 
symmetry): 

• For the quasi-PDF, which corresponds to a straight Wilson line, 
• γz , mixing with 1 at O(a0); 
• γt , no mixing at O(a0). 

• For the quasi beam function,  according to one-loop lattice 
perturbation theory, for bz=0, 
• γz , no mixing at O(a0); 
• γt , mixing with σtz at O(a0). 
• Nevertheless, based on the symmetry of lattice and the staple-shaped 

operator, one still cannot rule out mixings such as γz and 1, γt and σtx, etc; 
• At finite bz, the mixing pattern is more complicated.

�13

• M. Constantinou et al., PRD99 (2019)

• Constantinou and  Panagopoulos, PRD96 (2017); 
• J. Green et al., PRL121 (2018);  
• Chen et al, arXiv:1710.01089.
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RI’/MOM Renormalization

�14

G(b, p) = ∑
x

⟨γ5S†(p, b + x)γ5U(b + x, x)
Γ
2

S(p, x)⟩Green’s function:

Λ(b, p) = (γ5 [S−1(p)]†) G(b, p)S−1(p)Amputated Green’s function 
(or vertex function):

RI’/MOM scheme: Z−1
𝒪 (b, pμ

R)Zq(p2
R) G(b, p)

p=pR

= Gtree(b, pR) ,

Zq(p2
R) =

1
12

Tr [S−1(p)Stree(p)]
p=pR

• I. Stewart and Y.Z., PRD97 (2018); 
• Constantinou and Panagopoulos, PRD96 (2017);  
• M. Constantinou et al., PRD99 (2019).

Parametrization of the amputated Green’s function:

Λγt(z, p) = F̃tγt + F̃zγz + F̃T
bT/
bT

+ F̃p/
pt p/
p2

+ F̃σtz
σtz + F̃σtT

σtT + F̃AϵtzTργ5γρ + . . .

Chiral symmetry preserving

Chiral symmetry breaking
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Lattice renormalization
• Lattice setup: 

• Quenched Wilson gauge configurations; 

• Probe valence pion with  

• Ncfg=30.

�15

mπ ∼ 1.2 GeV

generated by Michael Endres
5

� a [fm] L3 ⇥ T ⌘
6.1005 0.08 24

3 ⇥ 48 7,9,11

6.3017 0.06 32
3 ⇥ 64 10,12,14

6.5977 0.04 48
3 ⇥ 96 15,18,21

TABLE I: Ensembles of quenched QCD gauge field config-

urations used in this work. � values are determined from

Ref. [43]. L, T , and ⌘ are given in lattice units, where ⌘
denotes the staple extents of the staple-shaped Wilson line

operators (Eq. (2)) computed.

nµ

p
p2 [GeV] pz [GeV] p[4]/(p2)2

(2,2,2,2) 2.4 1.3 0.27

(2,2,2,4) 2.7 1.3 0.25

(2,2,2,6) 3.1 1.3 0.31

(3,3,3,2) 3.5 1.9 0.30

(3,3,3,4) 3.7 1.9 0.26

(3,3,3,6) 4.0 1.9 0.25

(3,3,3,8) 4.3 1.9 0.28

(4,4,4,4) 4.7 2.6 0.28

(4,4,4,6) 4.9 2.6 0.26

(4,4,4,8) 5.2 2.6 0.25

TABLE II: Four-momenta considered in this work, where pµ
is the four-momentum in physical units corresponding to nµ

in lattice units. Note that pµ for a given nµ is the same

in physical units on all three ensembles, while p̃ (defined in

Eq. (33)) varies across the ensembles. The H(4) invariant p[4]

is defined in Eq. (31).

L ⇠ 2 fm. This enables a detailed analysis of the lattice-
spacing dependence of the mixing patterns induced by
the restricted space-time symmetries of the lattice theory.

On each ensemble, Z
RI/MOM

O;��0 (p) is computed via Eq. (19),
for staple operators O defined with staple extents ⌘ rang-
ing between 0.6–0.8 fm (specified in Table I), and with
staple widths and asymmetries bT and bz ranging from
�⌘ to ⌘, for the complete 16⇥16 matrix of �, �0 struc-
tures. Ten di↵erent momenta are considered, tabulated
in Tab. II. While the dependence of the RI/MOM renor-
malization on the unphysical scales µR and pz should be
cancelled by the matching to the MS scheme, residual
dependence on these scales remains with a matching cal-
culated perturbatively to one-loop order. Studying mo-
menta at a range of matching scales µ

2

R = p
2 from 5.6 to

28 GeV2 and pz from 1.3 to 2.6 GeV allows an assess-
ment of the systematic uncertainties in this matching.

A. Operator mixing with lattice regularization

THIS SECTION HAS THE RI/MOM MIXING MA-
TRICES, COMPARED WITH EXPECTED MIXINGS,
BEFORE FITS, SO TAKE MAX OVER ALL MO-
MENTA

Ultimately, MS renormalization factors are com-
puted by combining the non-perturbatively computed
RI/MOM factors with the one-loop perturbative match-

ing to the MS scheme described in Sec. III B. The non-
perturbative RI/MOM factors alone, however,

In several special cases, the mixing patterns have been
predicted

the maximum of ( Abs[ mixing matrix element ] / Abs [
average diagonal matrix element] ) over the ten momenta
studied, tabulated in Tab. II

On each figure, the mixing patterns predicted by one-
loop perturbation theory are highlighted for comparison.

For straight-line Wilson line operators along the z-
direction, the mixing pairs are [28]

• � = �
z and � = 1;

• � = �
t
�
5 and � = �

xy;

• � = �
x
�
5 and � = �

ty;

• � = �
y
�
5 and � = �

xt.

For staple-shaped Wilson line operators for b
z = 0 and

Wilson line directions being ẑ ! b̂T ! �ẑ, the mixing
pattern predicted by one-loop lattice perturbation the-
ory [39] is

• � = �
5 and � = �

z
�
5;

• � = �
µ and � = �

zµ for µ 6= z.

However, according to Yong, the mixing pattern is
more abundant, as � can mix with

[�, �
z] ,

⇥
�, /nT

⇤
, {�, �

z
} ,

�
�, /nT

 
. (29)

Mixing greater than 3% pattern observed from lattice
NPR study:

1. Local operators

• For � = 1, mixing with P = �
µ.

• For � = �
2
�5, mixing with P = �

1
�
3;

• For � = �
1
�5, mixing with P = �

t
�
1;

2. Straight-line Wilson line operators (quasi-PDFs)

⌘ = 11, 9, b
z = 9, bT = 0:

• For � = 1, mixing with P = �
µ (⇠ 3%).

• For � = �
t, mixing with P = 1 (⇠ 3%);

• For � = �
1, mixing with P = 1 (⇠ 3%);

• For � = �
2, mixing with P = 1 (> 10%) for Plist1

index = 1; mixing with P = �
t (> 10%) for Plist1

index = 5; mixing with P = �
µ (⇠ 3%);

• For � = �
3, no mixing;

!4

LQCD Setup

Independent of hadron state, choice of momenta, choice of 

…up to power corrections:             ,                       ,          

bz
<latexit sha1_base64="jVnEqJTH360Mj21pMDXcwhrAvkY=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQFXRbduKxgH9CGMJnetEMnkzAzEWvIr7hxoYhbf8Sdf+M0zUJbD1w4nHPv3LknSDhT2nG+rZXVtfWNzcpWdXtnd2/fPqh1VJxKCm0a81j2AqKAMwFtzTSHXiKBRAGHbjC5mfndB5CKxeJeTxPwIjISLGSUaCP5di0bFI9kAU8hx4H/lPt23Wk4BfAycUtSRyVavv01GMY0jUBoyolSfddJtJcRqRnlkFcHqYKE0AkZQd9QQSJQXlaszfGJUYY4jKUpoXGh/p7ISKTUNApMZ0T0WC16M/E/r5/q8MrLmEhSDYLOF4UpxzrGsyDwkEmgmk8NIVQy81dMx0QSqk1cVROCu3jyMumcNdzzhnN3UW9el3FU0BE6RqfIRZeoiW5RC7URRY/oGb2iNyu3Xqx362PeumKVM4foD6zPH6CzlM8=</latexit>

bT
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⌘
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�q,MS
⇣ (bT , µ) = ⇣

d

d⇣
fMS
q (x, bT , µ, ⇣)

<latexit sha1_base64="M9gvajAV7iY5gt+jyO9rdH1OzBs="></latexit>

=
1

ln(pz1/p
z
2)

ln
CMS

TMD(µ, xP
z
2 )

R
dbzeib

zxpz
1 eBMS

q (bz, bT , ⌘, µ, pz1)

CMS
TMD(µ, xp

z
1)

R
dbzeibzxp

z
2 eBMS

q (bz, bT , ⌘, µ, pz2)
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Exploit independence, 
calculate for valence pion 
with 

bT /⌘
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Not independent of sea quark mass, 
quenched gauge fields used for 
exploratory calculation 
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0 ≤ bz, bT ≤ η
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Lattice renormalization
• Choice of lattice momenta:

�16

5

� a [fm] L3 ⇥ T ⌘
6.1005 0.08 24

3 ⇥ 48 7,9,11

6.3017 0.06 32
3 ⇥ 64 10,12,14

6.5977 0.04 48
3 ⇥ 96 15,18,21

TABLE I: Ensembles of quenched QCD gauge field config-

urations used in this work. � values are determined from

Ref. [43]. L, T , and ⌘ are given in lattice units, where ⌘
denotes the staple extents of the staple-shaped Wilson line

operators (Eq. (2)) computed.

nµ

p
p2 [GeV] pz [GeV] p[4]/(p2)2

(2,2,2,2) 2.4 1.3 0.27

(2,2,2,4) 2.7 1.3 0.25

(2,2,2,6) 3.1 1.3 0.31

(3,3,3,2) 3.5 1.9 0.30

(3,3,3,4) 3.7 1.9 0.26

(3,3,3,6) 4.0 1.9 0.25

(3,3,3,8) 4.3 1.9 0.28

(4,4,4,4) 4.7 2.6 0.28

(4,4,4,6) 4.9 2.6 0.26

(4,4,4,8) 5.2 2.6 0.25

TABLE II: Four-momenta considered in this work, where pµ
is the four-momentum in physical units corresponding to nµ

in lattice units. Note that pµ for a given nµ is the same

in physical units on all three ensembles, while p̃ (defined in

Eq. (33)) varies across the ensembles. The H(4) invariant p[4]

is defined in Eq. (31).

L ⇠ 2 fm. This enables a detailed analysis of the lattice-
spacing dependence of the mixing patterns induced by
the restricted space-time symmetries of the lattice theory.

On each ensemble, Z
RI/MOM

O;��0 (p) is computed via Eq. (19),
for staple operators O defined with staple extents ⌘ rang-
ing between 0.6–0.8 fm (specified in Table I), and with
staple widths and asymmetries bT and bz ranging from
�⌘ to ⌘, for the complete 16⇥16 matrix of �, �0 struc-
tures. Ten di↵erent momenta are considered, tabulated
in Tab. II. While the dependence of the RI/MOM renor-
malization on the unphysical scales µR and pz should be
cancelled by the matching to the MS scheme, residual
dependence on these scales remains with a matching cal-
culated perturbatively to one-loop order. Studying mo-
menta at a range of matching scales µ

2

R = p
2 from 5.6 to

28 GeV2 and pz from 1.3 to 2.6 GeV allows an assess-
ment of the systematic uncertainties in this matching.

A. Operator mixing with lattice regularization

THIS SECTION HAS THE RI/MOM MIXING MA-
TRICES, COMPARED WITH EXPECTED MIXINGS,
BEFORE FITS, SO TAKE MAX OVER ALL MO-
MENTA

Ultimately, MS renormalization factors are com-
puted by combining the non-perturbatively computed
RI/MOM factors with the one-loop perturbative match-

ing to the MS scheme described in Sec. III B. The non-
perturbative RI/MOM factors alone, however,

In several special cases, the mixing patterns have been
predicted

the maximum of ( Abs[ mixing matrix element ] / Abs [
average diagonal matrix element] ) over the ten momenta
studied, tabulated in Tab. II

On each figure, the mixing patterns predicted by one-
loop perturbation theory are highlighted for comparison.

For straight-line Wilson line operators along the z-
direction, the mixing pairs are [28]

• � = �
z and � = 1;

• � = �
t
�
5 and � = �

xy;

• � = �
x
�
5 and � = �

ty;

• � = �
y
�
5 and � = �

xt.

For staple-shaped Wilson line operators for b
z = 0 and

Wilson line directions being ẑ ! b̂T ! �ẑ, the mixing
pattern predicted by one-loop lattice perturbation the-
ory [39] is

• � = �
5 and � = �

z
�
5;

• � = �
µ and � = �

zµ for µ 6= z.

However, according to Yong, the mixing pattern is
more abundant, as � can mix with

[�, �
z] ,

⇥
�, /nT

⇤
, {�, �

z
} ,

�
�, /nT

 
. (29)

Mixing greater than 3% pattern observed from lattice
NPR study:

1. Local operators

• For � = 1, mixing with P = �
µ.

• For � = �
2
�5, mixing with P = �

1
�
3;

• For � = �
1
�5, mixing with P = �

t
�
1;

2. Straight-line Wilson line operators (quasi-PDFs)

⌘ = 11, 9, b
z = 9, bT = 0:

• For � = 1, mixing with P = �
µ (⇠ 3%).

• For � = �
t, mixing with P = 1 (⇠ 3%);

• For � = �
1, mixing with P = 1 (⇠ 3%);

• For � = �
2, mixing with P = 1 (> 10%) for Plist1

index = 1; mixing with P = �
t (> 10%) for Plist1

index = 5; mixing with P = �
µ (⇠ 3%);

• For � = �
3, no mixing;

p[4] =
4

∑
μ=1

p4
μ
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Lattice renormalization
• For simplicity, we parameterize the amputated Green’s 

function as: 

• And obtain the 16 by 16 mixing matrix. 

• Considering that the mixings are all UV finite, we 
diagonalize the mixing matrix and renormalize the 
operator as !𝒪RI′�

Γ (pR) = (ZRI′ �
𝒪 (pR)−1)ΓΓ′�

𝒪latt
Γ′� .

�17

ΛΓ(z, p) =
16

∑
Γ′ �=1

CΓΓ′�ΛΓ′�(z, p)
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Numerical results
• RI’/MOM renormalization factors:

�18
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• P. Shanahan, M. Wagman, Y.Z., in progress.
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Numerical results
• RI’/MOM renormalization factors:
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Lattice results
• Quasi-PDF:

�20

6
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FIG. 2: Mixing pattern for the local operators.

• For � = �
t
�
1, mixing with P = �
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Lattice results
• Quasi beam function (bz=0):
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Lattice results

• Quasi beam function (bz≠0):
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Outline
• Nonperturbative renormalization 

• Collins-Soper evolution kernel from lattice QCD 

• Renormalizability and operator mixing 

• Lattice renormalization in the RI’/MOM scheme 

• Conversion to the MSbar scheme 

• One-loop conversion factors 

• Numerical results

�23



Yong Zhao, TMD Collaboration Meeting 2019

Conversion to the MSbar scheme

�24

𝒪MS
Γ (μ) = ℛΓΓ′�′�(μ, pR)(ZRI′ �

𝒪 (pR)−1)Γ′ �′�Γ′�
𝒪latt

Γ′� .

ℛMS
ΓΓ′�′�(b, L, μ, pR) = (ZMS(ϵ, μ))

−1
[ZRI′ �

𝒪 (b, L, pR, ϵ)]ΓΓ′�′�
At one-loop order in continuum perturbation theory, the conversion factor 
has been calculated for: 

•  at bz=0; 

•  for all bz.

Γ = Γ′�′� = {1,γ5, γλ, γ5γλ, σλρ}

Γ = γλ, Γ′�′� = {1,γ5, γρ, γ5γρ, σρσ}

• M. Constantinou et al., PRD99 (2019)

• M. Ebert, I. Stewart, Y.Z., in progress.
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Conversion to the MSbar scheme

• One-loop calculation:

�25
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Figure 3: One-loop diagrams contributing to the quasi TMD beam function, up to mirror
diagrams. The double line represents straight Wilson line segments and the ⌦ are the quark
fields. The crosses in (b) and (c) denote possible attachments of the gluon.

4.1 Vertex diagram
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After evaluating the Dirac trace, the integrals can be expressed in terms of the master
integrals defined in eq. (4.7) as
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Note that all poles explicitly cancel between the different master integrals, as infrared poles
are regulated by the offshellness p2 > 0 and UV poles are regulated by b2 > 0.
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In the limit of , linearly dependent on L/bT. 
This will lead to a significant one-loop correction.

L ≫ bT

+

• M. Ebert, I. Stewart, Y.Z., in progress.
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Conversion to the MSbar scheme

• Inclusion of the quasi soft factor: 

• The quasi soft factor does not depend on !  or ! , thus not affecting the 
ratio; 

• The quasi soft factor cancels the linearly divergent !  terms in the limit 
of !  ; 

• The implementation of the one-loop quasi soft factor is not unique:

pR bz

L/bT
L ≫ bT

�26

ℛ′�MS(b, L, μ, pR) = ℛMS(b, L, μ, pR)Δ̃s(bT, μ, L) =
ℛMS(b, L, μ, pR)

S̃q(bT, μ, L)
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αsCF
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4π
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Numerical results
• Parameters:

�27

a = 0.06 fm , Llat = 32 a , μ = 3.0GeV , αs(μ) = 0.2492 .

pR = (3,3,3,6) = (p1, p2, p3, p4) =
2π
Llat

≈ (1.9,1.9,1.9,3.9) GeV

p2
R = 63( 2π

Llat
)

2
≈ (5.1 GeV)2
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Numerical results
• ! v.s. !ℛMS bT
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ρ = λ = 0, 3 ℛMS = Z̃′�ρλ
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Figure 5: Comparison of different methods to include the soft factor �̃q
S in the matching

kernel Z̃ 0. The bT dependence is shown for bz = 0 (left) and bz = 3a (right). Note that
in contrast to eqs. (5.2) and (5.3), S̃(1) includes the prefactor ↵sCF /(4⇡). [ME: Add
as = (↵SCF )/(4⇡) into labels.] Only the real part is shown.

blue, red solid and dotted green, respectively. The left panel shows vanishing longitudinal
separation bz = 0, while the right panel shows bz = 5a. Clearly, the different choices given in
eq. (5.3) yield numerically quite different results. The red curve, corresponding to method
eq. (5.3b), has the flattest bT dependence and overall is closest to unity. This indicates a
good numeric cancellation of the L/bT divergences as well as moderate impact of leftover
ln(bTµ) in Z̃ 0�̃q

S , and hence this method is our default choice. In contrast, the other two
methods show a divergent behavior as bT ! 0. While this region is less interesting for the
lattice calculation, this behavior is clearly disfavored.

Finally, we study the pz dependence for fixed bT = 5 a and bz = 3 a. Fixing pz leaves
considerable freedom for the other parameters of pR, and we choose

pR =
�p

79� (pz)2, 1, 1, pz
� 2⇡

Llat

, p2R =
⇣
9
2⇡

Llat

⌘2

⇡ (5.8 GeV)2 , (5.4)

where p0 is a function of pz such that p2R is fixed. The largest value of pz yielding a real
solution for p0 is then given by pz =

p
79(2⇡/Llat) ⇡ 5.7 GeV. Fig. 6 shows the resulting

matching coefficient including the soft factor. The real part (red solid) is observed to be
very close to unity, again indicating small conversion corrections and a minor sensitivity
to pz. The imaginary part (blue dashed) is multiplied by 100 to be visible, and clearly
constitutes only a O(1%) correction.
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Numerical results
• ! v.s. !ℛMS bT
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Figure 4: One-loop conversion factor Z̃ 0 for the quasi-beam function from the
RI0/MOM scheme to the MS scheme, as a function of bT /a for bz = 0 (top), as a function
of bT /a for bz = 3 a (middle) and as a function of bz/a for bT = 5 a (bottom). In the right
panel we also include the quasi soft factor �̃q

S .

dashed orange, respectively. We do not show offdiagonal Dirac structures, which are all
observed to yield very small corrections.

In the left panel, one observes rather large corrections from the RI0/MOM to MS

conversion, generically of the order of 100%. In the two bT spectra, one can furthermore
see the effect of the Wilson line self energies / L/bT at small bT . After including the soft
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Numerical results
• ! v.s. !ℛMS bT
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Figure 4: One-loop conversion factor Z̃ 0 for the quasi-beam function from the
RI0/MOM scheme to the MS scheme, as a function of bT /a for bz = 0 (top), as a function
of bT /a for bz = 3 a (middle) and as a function of bz/a for bT = 5 a (bottom). In the right
panel we also include the quasi soft factor �̃q

S .

dashed orange, respectively. We do not show offdiagonal Dirac structures, which are all
observed to yield very small corrections.

In the left panel, one observes rather large corrections from the RI0/MOM to MS

conversion, generically of the order of 100%. In the two bT spectra, one can furthermore
see the effect of the Wilson line self energies / L/bT at small bT . After including the soft

– 21 –

Prel
im

ina
ry!

• M. Ebert, I. Stewart, Y.Z., in progress.



Yong Zhao, TMD Collaboration Meeting 2019

Numerical results
• ! v.s. !ℛMS bz
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Figure 4: One-loop conversion factor Z̃ 0 for the quasi-beam function from the
RI0/MOM scheme to the MS scheme, as a function of bT /a for bz = 0 (top), as a function
of bT /a for bz = 3 a (middle) and as a function of bz/a for bT = 5 a (bottom). In the right
panel we also include the quasi soft factor �̃q

S .

dashed orange, respectively. We do not show offdiagonal Dirac structures, which are all
observed to yield very small corrections.

In the left panel, one observes rather large corrections from the RI0/MOM to MS

conversion, generically of the order of 100%. In the two bT spectra, one can furthermore
see the effect of the Wilson line self energies / L/bT at small bT . After including the soft
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Numerical results
• ! v.s. !ℛMS pz

R
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ρ = λ = 0, 3 ℛMS = Z̃′�ρλ
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Figure 6: One-loop conversion factor Z̃ 0 for the quasi-beam function from the RI0/MOM to
the MS as a function of pz for fixed p2, bT and bz. The quasi soft factor is included.

6 Conclusion

We have calculated the one-loop renormalization of transverse-momentum dependent quasi-
beam functions in the regularization-independent momentum subtraction RI0/MOM scheme,
as well as the matching from the RI0/MOM scheme to the MS scheme. This allows one to
convert lattice determinations of these quasi-beam functions, which are necessarily renor-
malized in a nonperturbative lattice renormalization scheme, to the MS scheme. Our re-
sults are thus key to determining the Collins-Soper kernel from lattice QCD using ratios of
quasi-TMDPDFs suggested in Refs. [116, 117]. They will also be used in the lattice study
of nonperturbative renormalization of the quasi-beam functions [127].

Numerically, we find that the one-loop renormalization yields large corrections due
to the appearance of Wilson-line self energies. Combining it with the one-loop result for
the quasi soft function, which formally cancels in the ratio required to determine the CS
kernel, these Wilson-line self energies can be canceled, yielding a perturbative matching of
moderate size in the parameter space relevant for lattice QCD.

We have also elaborated on the method to determine the CS kernel using ratios of
quasi-TMDPDFs. Originally, this was achieved by forming ratios of properly matched quasi-
TMDPDFs in momentum space, which requires to Fourier transform spatial correlations
obtained from lattice to momentum space. We have shown that one can equivalently form
ratios directly in position space, where the Fourier transform is traded for a convolution.
Nevertheless, we expect this to improve the numerical stability of the method. Together
with the one-loop matching, this will allow for a first nonperturbative determination of the
CS kernel from lattice QCD.

Acknowledgments

We thank Phiala Shanahan and Michael Wagman for useful discussions. This work was
supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics,

– 24 –

Prel
im

ina
ry!

• M. Ebert, I. Stewart, Y.Z., in progress.



Yong Zhao, TMD Collaboration Meeting 2019

Numerical results
• Fitting the lattice artifacts:
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ρ = λ = 0
= 𝒵MS(μ)+c1p̃z + c2 p̃2 + c3p̃2

4

+c4
p̃[4]

p̃2
+ c5p̃2 ln( p̃2)+

d1

p̃2
+…

p̃μ ≡ sin(apμ)

𝒵MS(μ, pR) − lattice artifacts

ZRI′�(pR)
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6 8 10 12 14 16 18

1.75

1.80

1.85

1.90

p2 [GeV2]

Z γ
4
γ4
(b
T
=0
.1
2
fm
,b

z=
-0
.0
6
fm

)

𝒵MS(μ, pR)

𝒵MS(μ, pR) = ℛ(μ, pR)(ZRI′�
𝒪 (pR)−1)



Yong Zhao, TMD Collaboration Meeting 2019

A first look at the CS kernel
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!  running with Nf=0.αs
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Conclusion
• The RI’/MOM renormalization of the quasi beam function has been 

implemented nonperturbatively on the lattice; 

• In addition to the operator mixings predicted by one-loop lattice 
perturbation theory for the Wilson fermions, we have also observed 
other sizable mixings; 

• The one-loop MSbar conversion factor has been calculated for the quasi 
beam function, and the inclusion of quasi soft factor significantly 
reduces the perturbative correction; 

• The final MSbar renormalization factors can be well fitted with lattice 
artifacts; 

• Future work will improve statistics and mixing analysis to determine the 
CS kernel from the lattice.
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