

Nonperturabtive Renormalization of Quasi-TMD on the Lattice

Yong Zhao Brookhaven National Laboratory Sep 16, 2019

4th TMD Collaboration Meeting & POETIC 2019, Lawrence Berkeley National Laboratory, CA 09/16-18, 2019

Outline

- Nonperturbative renormalization
 - Collins-Soper evolution kernel from lattice QCD
 - Renormalizability and operator mixing
 - Lattice renormalization in the RI'/MOM scheme
- Conversion to the MSbar scheme
 - One-loop conversion factors
 - Numerical results

Large-momentum effective theory

• Quasi-PDF:

PDF q(x): Cannot be calculated on the lattice • Ji, PRL110 (2013);

• Ji, SCPMA57 (2014).

Quasi-PDF $\tilde{q}(x, P^z)$: Directly calculable on the lattice

$$\tilde{q}(x, P^{z}, \mu) = \int \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP^{z}}\right) q(y, \mu) + O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{x^{2}P_{z}^{2}}\right)$$

- Xiong, Ji, Zhang and Y.Z., PRD90 (2014);
- Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018);
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

Large-momentum effective theory

- Xiong, Ji, Zhang and Y.Z., PRD90 (2014);
- Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018);
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

Quasi-TMDPDF

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

$$\tilde{f}_{q}^{\text{TMD}}(x, \vec{b}_{T}, \mu, P^{z}) = \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{Z}'(b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\text{UV}}(b^{z}, \mu, a) \frac{\tilde{B}_{q}(b^{z}, \vec{b}_{T}, a, L, P^{z})}{\sqrt{\tilde{S}_{q}(b_{T}, a, L)}}$$

$$B_{q}(x, \vec{b}_{T}, \epsilon, \tau, xP^{-})$$

$$\epsilon: \text{UV regulator}$$

$$\tau: \text{rapidity regulator}$$

$$\tau: \text{rapidity regulator}$$

$$Lorentz \text{ boost and } L \to \infty$$

Yong Zhao, TMD Collaboration Meeting 2019

Definition:

Quasi-TMDPDF

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

$$\tilde{f}_{q}^{\text{TMD}}(x,\vec{b}_{T},\mu,P^{z}) = \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{Z}'(b^{z},\mu,\tilde{\mu}) \tilde{Z}_{\text{UV}}(b^{z},\mu,a) \frac{\tilde{B}_{q}(b^{z},\vec{b}_{T},a,L,P^{z})}{\sqrt{\tilde{S}_{q}(b_{T},a,L)}}$$

Naive $\tilde{S}_q(b_T, a, L)$

• Definition:

 $S_q(b_T,\epsilon,\tau)$

Quasi-TMDPDF

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

$$\tilde{f}_{q}^{\text{TMD}}(x,\vec{b}_{T},\mu,P^{z}) = \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{Z}'(b^{z},\mu,\tilde{\mu}) \tilde{Z}_{\text{UV}}(b^{z},\mu,a) \frac{\tilde{B}_{q}(b^{z},\vec{b}_{T},a,L,P^{z})}{\sqrt{\tilde{S}_{q}(b_{T},a,L)}}$$

Relationship to the physical TMDPDF:

• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

Yong Zhao, TMD Collaboration Meeting 2019

Definition:

Collins-Soper kernel of TMDPDF from lattice QCD

The idea of forming ratios to cancel the soft function has been used in the calculation of *x*-moments of TMDPDFs by

Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), arXiv:1601.05717, PRD96 (2017)

Collins-Soper kernel of TMDPDF from lattice QCD

Collins-Soper (CS) kernel does not depend on the external hadron state, which means that one can calculate it with a pion state including heavier than physical valence quarks.

work in progress with Phiala Shanahan (MIT) and Michael Wagman (MIT).

Procedure of lattice calculation

1. Lattice simulation of the bare quasi-beam function

$$b^z \sim \frac{1}{P^z} \ll b_T \ll \eta < \frac{L_{\text{Lat}}}{2}$$

Procedure of lattice calculation

2. Renormalization and conversion to the MSbar scheme

 $\times \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \int db^{z} db^{z} db^{z}}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z})} \int db^{z} db^{z} db^{z} db^{z} (b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\mathrm{ns}}(b^{z}, \vec{b}_{T}, a, L, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \int db^{z} db^{z} db^{z} (b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\mathrm{ns}}(b^{z}, \vec{b}_{T}, a, L, P_{2}^{z})}$

Nonperturbative Renormalization: Conversion to MSbar scheme: $ilde{Z}_{\mathrm{UV}}(b^{z}, ilde{\mu}, a)$ $ilde{Z}'(b^{z}, \mu, ilde{\mu})$

Procedure of lattice calculation

- 3. Fourier transform and calculate the ratio at different P^z $\gamma_{\zeta}^q(\mu, b_T) = \frac{1}{\ln(P_1^z/P_2^z)}$
 - $\times \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \vec{b}_{T}, a, L, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \int db^{z} \ e^{ib^{z}xP_{2}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \vec{b}_{T}, a, L, P_{2}^{z})}$
 - Independent of the choice of x!
 - Independent of P^z!
 - One may still seek alternatives to Fourier transforms that can be done directly in coordinate space.

$$\gamma_{\zeta}^{q}(\mu, b_{T}) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{\int db^{z} \,\bar{C}_{\rm ns}(\mu, y - b^{z}P_{1}^{z}, P_{1}^{z}) \tilde{f}_{\rm ns}(b^{z}, \vec{b}_{T}, \mu, P_{1}^{z})}{\int db^{z} \,\bar{C}_{\rm ns}(\mu, y - b^{z}P_{2}^{z}, P_{2}^{z}) \tilde{f}_{\rm ns}(b^{z}, \vec{b}_{T}, \mu, P_{2}^{z})}$$

• M. Ebert, I. Stewart, Y.Z., in progress. $\bar{C}_{ns}(\mu, b^z P^z, P^z) = \left[dx \, e^{-ix(b^z P^z)} \left[C_{ns}(\mu, x P^z) \right]^{-1} \right]^{-1}$

Renormalizability

Renormalization in the continuum theory:

$$\begin{split} \widehat{\mathcal{D}}_{0}^{\Gamma}(b^{\mu},L) &\equiv \bar{q}_{0}(b^{\mu})W_{\hat{z}}\frac{\Gamma}{2}W_{T}W_{\hat{z}}^{\dagger}q_{0}(0) \\ &= Z_{q,W}e^{\delta m(L+|L-b^{z}|+b_{T})}\Big(\bar{q}(b^{\mu})W_{\hat{z}}\frac{\Gamma}{2}W_{T}W_{\hat{z}}^{\dagger}q(0)\Big)_{R} \\ &\equiv \widetilde{Z}_{\mathcal{O}}\Big(\bar{q}(b^{\mu})W_{\hat{z}}\frac{\Gamma}{2}W_{T}W_{\hat{z}}^{\dagger}q(0)\Big)_{R} \end{split}$$

Can be proved using the auxiliary field formalism.

 $\mathcal{O}_{0}^{\Gamma}(b^{\mu},L) \equiv \langle q_{0}(b^{\mu})\Gamma Q_{1}(b^{\mu})\bar{Q}_{1}(\infty,b_{T})Q_{2}(\infty,b_{T}) \\ \times \bar{Q}_{2}(\infty,0_{T})Q_{3}(\infty,0_{T})\bar{Q}_{3}(0)q_{0}(0) \rangle_{Q_{1},Q_{2},Q_{3}}$

• X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);

• J. Green et al., PRL121 (2018);

Operator mixing

- Renormalization on the lattice (with broken chiral symmetry):
 - For the quasi-PDF, which corresponds to a straight Wilson line,
 - γ^{z} , mixing with 1 at O(a⁰);
 - γ^t , no mixing at O(a⁰).

- Constantinou and Panagopoulos, PRD96 (2017);
- J. Green et al., PRL121 (2018);
- Chen et al, arXiv:1710.01089.
- For the quasi beam function, according to one-loop lattice perturbation theory, for $b^z=0$,

• M. Constantinou et al., PRD99 (2019)

- γ^{z} , no mixing at O(a⁰);
- γ^t , mixing with σ^{tz} at O(a⁰).
- Nevertheless, based on the symmetry of lattice and the staple-shaped ulletoperator, one still cannot rule out mixings such as γ^z and 1, γ^t and σ^{tx} , etc;
- At finite b^{z} , the mixing pattern is more complicated. •

RI'/MOM Renormalization

Green's function:

Amputated Green's function (or vertex function):

RI'/MOM scheme:

$$G(b,p) = \sum_{x} \left\langle \gamma_5 S^{\dagger}(p,b+x) \gamma_5 U(b+x,x) \frac{\Gamma}{2} S(p,x) \right\rangle$$
$$\Lambda(b,p) = \left(\gamma_5 \left[S^{-1}(p) \right]^{\dagger} \right) G(b,p) S^{-1}(p)$$

$$Z_{\mathcal{O}}^{-1}(b, p_R^{\mu}) Z_q(p_R^2) G(b, p) \bigg|_{p=p_R} = G^{\text{tree}}(b, p_R),$$

- I. Stewart and Y.Z., PRD97 (2018);
- Constantinou and Panagopoulos, PRD96 (2017);
- M. Constantinou et al., PRD99 (2019).

$$Z_q(p_R^2) = \frac{1}{12} \operatorname{Tr} \left[S^{-1}(p) S^{\operatorname{tree}}(p) \right] \Big|_{p=p_R}$$

Parametrization of the amputated Green's function:

$$\Lambda_{\gamma^{t}}(z,p) = \tilde{F}_{t}\gamma^{t} + \tilde{F}_{z}\gamma^{z} + \tilde{F}_{T}\frac{b_{T}^{t}}{b_{T}} + \tilde{F}_{p}\frac{p^{t}p^{t}}{p^{2}}$$
 Chiral symmetry preserving

+ $\tilde{F}_{\sigma_{tz}}\sigma^{tz}$ + $\tilde{F}_{\sigma_{tT}}\sigma^{tT}$ + $\tilde{F}_{A}\epsilon^{tzT\rho}\gamma_{5}\gamma_{\rho}$ + ... Chiral symmetry breaking

Lattice renormalization

Lattice setup:

generated by Michael Endres

Quenched Wilson gauge configurations;

β	$a [\mathrm{fm}]$	$L^3 \times T$	η
6.1005	0.08	$24^3 \times 48$	$7,\!9,\!11$
6.3017	0.06	$32^3 \times 64$	$10,\!12,\!14$
6.5977	0.04	$48^3 \times 96$	$15,\!18,\!21$

• Probe valence pion with $m_{\pi} \sim 1.2 \text{ GeV}$

• N_{cfg}=30.

Lattice renormalization

Choice of lattice momenta:

n_{μ}	$\sqrt{p^2}$ [GeV]	p_z [GeV]	$p^{[4]}/(p^2)^2$	4
(2,2,2,2)	2.4	1.3	0.27	
(2,2,2,4)	2.7	1.3	0.25	$p^{[4]} = \sum p_{\mu}^{4}$
(2,2,2,6)	3.1	1.3	0.31	
(3,3,3,2)	3.5	1.9	0.30	$\mu = 1$
(3,3,3,4)	3.7	1.9	0.26	
(3,3,3,6)	4.0	1.9	0.25	
(3,3,3,8)	4.3	1.9	0.28	
(4,4,4,4)	4.7	2.6	0.28	
(4, 4, 4, 6)	4.9	2.6	0.26	
(4,4,4,8)	5.2	2.6	0.25	

Lattice renormalization

$$\Lambda_{\Gamma}(z,p) = \sum_{\Gamma'=1} C_{\Gamma\Gamma'} \Lambda_{\Gamma'}(z,p)$$

- And obtain the 16 by 16 mixing matrix.
- Considering that the mixings are all UV finite, we diagonalize the mixing matrix and renormalize the operator as $\mathscr{O}_{\Gamma}^{\overline{\mathrm{RI}'}}(p_R) = \left(Z_{\mathscr{O}}^{\mathrm{RI}'}(p_R)^{-1}\right)_{\Gamma\Gamma'} \mathscr{O}_{\Gamma'}^{\mathrm{latt}}$.

RI'/MOM renormalization factors:

RI'/MOM renormalization factors:

Lattice results

Quasi beam function ($b^z=0$):

 $Max\{Z_{\Gamma\Gamma'}\}$ Tr[Z]/16

@ all momentum choices.

"o" stands for predicted mixing.

 $a = 0.08 \text{ fm}, L_{\text{lat}} = 24 a.$

Quasi beam function $(b^z \neq 0)$:

 $Max\{Z_{\Gamma\Gamma'}\}$ Tr[Z]/16

@ all momentum choices.

"o" stands for predicted mixing.

 $a = 0.08 \text{ fm}, L_{\text{lat}} = 24 a.$

Outline

- Nonperturbative renormalization
 - Collins-Soper evolution kernel from lattice QCD
 - Renormalizability and operator mixing
 - Lattice renormalization in the RI'/MOM scheme
- Conversion to the MSbar scheme
 - One-loop conversion factors
 - Numerical results

Conversion to the MSbar scheme

$$\mathscr{O}_{\Gamma}^{\overline{\mathrm{MS}}}(\mu) = \mathscr{R}_{\Gamma\Gamma''}(\mu, p_R) \left(Z_{\mathscr{O}}^{\mathrm{RI}'}(p_R)^{-1} \right)_{\Gamma''\Gamma'} \mathscr{O}_{\Gamma'}^{\mathrm{latt}} .$$
$$\mathscr{R}_{\Gamma\Gamma''}^{\overline{\mathrm{MS}}}(b, L, \mu, p_R) = \left(Z^{\overline{\mathrm{MS}}}(\epsilon, \mu) \right)^{-1} \left[Z_{\mathscr{O}}^{\mathrm{RI}'}(b, L, p_R, \epsilon) \right]_{\Gamma\Gamma''}$$

At one-loop order in continuum perturbation theory, the conversion factor has been calculated for:

• $\Gamma = \Gamma'' = \{1, \gamma_5, \gamma^{\lambda}, \gamma_5 \gamma^{\lambda}, \sigma^{\lambda \rho}\}$ at $b^z = 0$; • M. Constantinou et al., PRD99 (2019)

•
$$\Gamma = \gamma^{\lambda}$$
, $\Gamma'' = \{1, \gamma_5, \gamma^{\rho}, \gamma_5 \gamma^{\rho}, \sigma^{\rho\sigma}\}$ for all b^z .

• M. Ebert, I. Stewart, Y.Z., in progress.

Conversion to the MSbar scheme

- One-loop calculation:
- M. Ebert, I. Stewart, Y.Z., in progress.

(a) Vertex diagram

 $\vec{\mathbf{b}}$

(c) Wilson line self energy

$$\vec{0} \otimes \vec{0} \otimes \vec{0} \otimes \vec{0} \qquad \forall \vec{1} \text{ In the limit of } L \gg b_T, \text{ at most} \\ \vec{0} \otimes \vec{0} \otimes \vec{0} \otimes \vec{0} & \forall \vec{0} & \forall \vec{0} \\ \vec{1} \otimes \vec$$

$$= -2\frac{b^z}{b_T}\arctan\frac{b^z}{b_T} + 2\frac{L}{b_T}\arctan\frac{L}{b_T} + 2\frac{L-b^z}{b_T}\arctan\frac{L-b^z}{b_T}$$

In the limit of $L \gg b_T$, linearly dependent on L/b_T . This will lead to a significant one-loop correction.

Conversion to the MSbar scheme

Inclusion of the quasi soft factor:

$$\mathcal{R}^{\overline{\mathrm{MS}}}(b,L,\mu,p_R) = \mathcal{R}^{\overline{\mathrm{MS}}}(b,L,\mu,p_R)\tilde{\Delta}_s(b_T,\mu,L) = \frac{\mathcal{R}^{\mathrm{MS}}(b,L,\mu,p_R)}{\sqrt{\tilde{S}^q(b_T,\mu,L)}}$$

- The quasi soft factor does not depend on p_R or b^z, thus not affecting the ratio;
- The quasi soft factor cancels the linearly divergent L/b_T terms in the limit of $L \gg b_T$;
- The implementation of the one-loop quasi soft factor is not unique:

$$\begin{pmatrix} 1 + \frac{\alpha_s C_F}{4\pi} \mathscr{R}^{\overline{\mathrm{MS}}(1)} \end{pmatrix} \times \left(1 + \frac{\alpha_s C_F}{4\pi} \widetilde{S}^{q(1)} \right)^{-1/2} + \mathscr{O}(\alpha_s^2) \\ \left(1 + \frac{\alpha_s C_F}{4\pi} \mathscr{R}^{\overline{\mathrm{MS}}(1)} \right) \times \left(1 + \frac{1}{2} \frac{\alpha_s C_F}{4\pi} \widetilde{S}^{q(1)} \right)^{-1} + \mathscr{O}(\alpha_s^2) \\ \left(1 + \frac{\alpha_s C_F}{4\pi} \mathscr{R}^{\overline{\mathrm{MS}}(1)} \right) \times \left(1 - \frac{1}{2} \frac{\alpha_s C_F}{4\pi} \widetilde{S}^{q(1)} \right) + \mathscr{O}(\alpha_s^2)$$

• Parameters:

$$a = 0.06 \text{ fm}, L_{\text{lat}} = 32 a, \mu = 3.0 \text{GeV}, \alpha_s(\mu) = 0.2492.$$
$$p_R = (3,3,3,6) = (p^1, p^2, p^3, p^4) = \frac{2\pi}{L_{\text{lat}}} \approx (1.9, 1.9, 1.9, 3.9) \text{ GeV}$$
$$p_R^2 = 63 \left(\frac{2\pi}{L_{\text{lat}}}\right)^2 \approx (5.1 \text{ GeV})^2$$

• M. Ebert, I. Stewart, Y.Z., in progress.

• M. Ebert, I. Stewart, Y.Z., in progress.

• M. Ebert, I. Stewart, Y.Z., in progress.

• \mathscr{R}^{MS} v.s. b^z $\rho = \lambda = 0, 3$ $\mathscr{R}^{\overline{MS}} = \tilde{Z}^{\rho\lambda}$

• M. Ebert, I. Stewart, Y.Z., in progress.

• M. Ebert, I. Stewart, Y.Z., in progress.

A first look at the CS kernel

Caveat: low stats and mixing not considered.

Yong Zhao, TMD Collaboration Meeting 2019

Conclusion

- The RI'/MOM renormalization of the quasi beam function has been implemented nonperturbatively on the lattice;
- In addition to the operator mixings predicted by one-loop lattice perturbation theory for the Wilson fermions, we have also observed other sizable mixings;
- The one-loop MSbar conversion factor has been calculated for the quasi beam function, and the inclusion of quasi soft factor significantly reduces the perturbative correction;
- The final MSbar renormalization factors can be well fitted with lattice artifacts;
- Future work will improve statistics and mixing analysis to determine the CS kernel from the lattice.