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A novel approach to calculate light-
cone PDFs

• Large-Momentum Effective Theory: 
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A novel approach to calculate light-
cone PDFs

�5

lim
Pz→∞

q̃(x, Pz) = ?

Instead of taking Pz→∞ limit, one can 
perform an expansion for large but finite Pz:

•              and         have the same infrared physics (nonperturbative), 
but different ultraviolet (UV) physics (perturbative); 

• Therefore, the matching coefficient C is perturbative, which 
controls the logarithmic dependences on Pz.

q̃(x, Pz) q(x)

q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

• X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014); 
• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

Pz

Pz

∞

∞
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Factorization formulas

• Non-singlet quark PDFs: 

• Gluon PDF and singlet quark PDF: 

• Non-singlet quark GPD:

�6

q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

F̃γ̃z(x, ξ, t, μ) = ∫
1

−1

dy
|ξ |

C ( x
ξ

,
y
ξ

,
μ

ξPz ) Fγ+(y, ξ, t, μ) + O( M2

P2
z

,
t

P2
z

,
Λ2

QCD

x2P2
z

)

= ∫
1

−1

dy
|y |

C̄ ( x
y

,
ξ
y

,
μ

yPz ) Fγ+(y, ξ, t, μ) + O( M2

P2
z

,
t

P2
z

,
Λ2

QCD

x2P2
z

)
• Y.-S. Liu, Y.Z. et al., PRD100 (2019)

q̃i(x, Pz, μ) = ∫
1

−1

dy
|y | [∑

j

Cqiqj(
x
y

,
μ

yPz
)qj(y, μ) + Cqg( x

y
,

μ
yPz

)g(y, μ)] + 𝒪( M2

P2
z

,
Λ2

QCD

x2P2
z )

g̃(x, Pz, μ) = ∫
1

−1

dy
|y | [∑

j

Cgq( x
y

,
μ

yPz
)qj(y, μ) + Cgg( x

y
,

μ
yPz

)g(y, μ)] + 𝒪( M2

P2
z

,
Λ2

QCD

x2P2
z )

• Wang et al., EPJC78 (2018), JHEP1805 (2018); 
• Zhang et al., arXiv: 1904.00978.
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Renormalization

• Multiplicative renormalizability (in the continuum theory)
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ψ̄0(z)
Γ
2

W0[z,0]ψ0(0) = eδm|z| Zj1Zj2 [ψ̄(z)
Γ
2

W[z,0]ψ(0)]
R

• X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);  
• J. Green et al., PRL121 (2018);  
• T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, PRD96 (2017).

Õg
0(z) = eδm|z|Zj1Zj2ZAZQ[Õg(z)]R

+eδm|z|Zmix[gμν
⊥ Aμ(z)W[z,0]Aν(0)]R

δ(z)δn1 ̂zδn2 ̂z

Õg(z) = g⊥,μνFn1μ(z)W[z,0]Fn2ν(0) n1, n2 ∈ { ̂z, ̂v},

̂zμ = (0,0,0,1), ̂vμ = (1,0,0,0)

No mixing with quarks under renormalization!

• Zhang, Ji, Schaefer et al., PRL122 (2019); 
• Li, Ma, and Qiu, PRL122 (2019).
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Renormalization

• Operator mixing on the lattice (with broken chiral 
symmetry) 

• γz , finite mixing with 1 at O(a0); 
• γt , no mixing at O(a0). 

• γz γ5 , no mixing at O(a0); 
• γt γ5 , finite mixing with 1 at O(a0); 

• i γx γz γ5 , finite mixing with 1 at O(a0); 
• i γx γt γ5 , no mixing at O(a0).
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• Constantinou and  Panagopoulos, PRD96 (2017); 
• J. Green et al., PRL121 (2018);  
• Chen et al, arXiv:1710.01089.
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Renormalization

• Perturbative renormalization (lattice perturbation theory) 

• Nonperturbative renormalization: 

• Static quark-antiquark potential 

• RI/MOM 

• Mixed schemes 

• Smeared quasi-PDF in the gradient flow method

�10

• Constantinou and  Panagopoulos, PRD96 (2017); 
• Ishikawa et al., arXiv:1609.02018  
• Xiong, Luu and Meißner, arXiv: 1705.00246

• Ishikawa et al., arXiv:1609.02018  
• Zhang et al. (LP3), PRD95 (2017)

• Constantinou and  Panagopoulos, PRD96 (2017); 
• Stewart and Y.Z., PRD97 (2018)  
• Alexandrou et al. (ETMC), NPB923 (2017)  
• Chen et al. (LP3), PRD97 (2018)  
• Liu et al. (LP3), arXiv:1807.06566

• J. Green et al., PRL121 (2018); 

• Monahan and Orginos, JHEP 1703 (2017) 
• Monahan, PRD97 (2018)
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Nonperturbative renormalization

• RIMOM scheme:
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G(b, p) = ∑
x

⟨γ5S†(p, b + x)γ5U(b + x, x)
Γ
2

S(p, x)⟩Green’s function:

Λ(b, p) = (γ5 [S−1(p)]†) G(b, p)S−1(p)Amputated Green’s function 
(or vertex function):

RI’/MOM scheme: Z−1
𝒪 (b, pμ

R)Zq(p2
R) Tr [Λ(b, p)𝒫]

p=pR

= Tr [Λtree(b, pR)𝒫] ,

Zq(p2
R) =

1
12

Tr [S−1(p)Stree(p)]
p=pR

• I. Stewart and Y.Z., PRD97 (2018); 
• Constantinou and Panagopoulos, PRD96 (2017).

Parametrization of the amputated Green’s function:

Λγt(z, p) = F̃tγt + F̃zγz + F̃p/
pt p/
p2 Choice of !  must include ! .𝒫 γt

• Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566.
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Perturbative matching

�12

• Continuum limit of the renormalized matrix element: 

• Regularization-independence allows the matching to be 
done in continuum perturbation theory (with dimensional 
regularization.)

lim
a→0

⟨P | Õ(z, a) |P⟩
Z𝒪(z, pR

μ , μR, a)
=

⟨P | Õ(z, ϵ) |P⟩
Z𝒪(z, pR

μ , μR, ϵ)

D = 4 − 2ϵ
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Two matching strategies
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⟨P | Õ(z, ϵ) |P⟩
Z𝒪(z, pR

μ , μR, ϵ)

q̃(x, Pz, μR, pR
z )

×
Z𝒪(z, pR

z , μR, ϵ)
ZMS

𝒪 (ϵ, μ)
=

⟨P | Õ(z, ϵ) |P⟩
ZMS

𝒪 (ϵ, μ)

q̃(x, Pz, μ)

q(x, μ)

F.T.

F.T.

Matching
Matching

• I. Stewart and Y.Z., PRD97 (2018); 
• J.-W. Chen, Y.Z. et al., LP3 Collaboration, PRD97 (2018).

• Constantinou and Panagopoulos, PRD96 (2017);  
• C. Alexandrou et al., ETM Collaboration, NPB923 (2017).

Z ratio
𝒪 (ϵ, μ)/ZMMS

𝒪 (ϵ, μ)
Or

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and 
Y.Z., PRD98 (2018); 

• Alexandrou et al. (ETMC), PRD99 (2019)
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One-step matching

• Matching formula: 

• Matching kernel:
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q̃(x, Pz, μR, pR
z ) = ∫

1

−1

dy
|y |

C ( x
y

, r,
yPz

μ
,

yPz

pR
z ) q(y, μ) + O(1/P2

z )

r =
μ2

R

(pR
z )2

C (ξ, r,
pz

μ
,

pz

pR
z ) = δ(1 − ξ) +

αsCF

2π
CB (ξ,

pz

μ ) −
pz

pR
z

h (1 +
pz

pR
z

(ξ − 1), r)
(−∞,∞)

+
ξ =

x
y

, pz = yPz

[f(x)](−∞,∞)
+

= f(x) − δ(x − 1)∫
∞

−∞
dy f(y)

😄Formally satisfying vector current (or particle number conservation):
∫

∞

−∞
dξ C(ξ) = 1

• I. Stewart and Y.Z., PRD97 (2018);

Renormalization scale dependence to be cancelled after matching, making 
systematics analysis of discretization effects more complicated.

😒
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Two-step matching

• Scheme conversion: 

• Matching in the MSbar scheme:
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C(z, pR
z , μR, μ) =

Z𝒪(z, pR
z , μR, ϵ)

ZMS
𝒪 (ϵ, μ)

• Constantinou and Panagopoulos, PRD96 (2017)

q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018)

Renormalization scale dependence to be cancelled in the first step, 
useful for the systematics analysis.

😄 Systematics analysis of discretization effects is easier.
Does not satisfy vector current (or particle number) conservation, 
thus lacking a cross check in the intermediate steps.

😒
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Modified schemes

• Ratio scheme: 

• Modified MSbar scheme:
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Cratio(z, pR
z , μR, μ) =

C(z, pR
z , μR, μ)

1 + αsCF

2π [ 3
2 ln μ2z2e2γE

4 + 5
2 ]

lim
z→0

C(z, pR
z , μR, μ) = 1

CMMS(z, pR
z , μR, μ) =

C(z, pR
z , μR, μ)

30

other hand, automatically cancel in C
MS
�0 , which is explicitly written as

C
MS
�0

✓
⇠,

µ̄

p3
,
µ̄

µF

◆
= � (1� ⇠)

+
↵sCF

2⇡

8
>>>>>>>><

>>>>>>>>:

✓
1 + ⇠

2

1� ⇠
ln

✓
⇠

⇠ � 1

◆
+ 1 +

3

2⇠

◆

+(1)

�
3

2⇠
, ⇠ > 1

✓
1 + ⇠

2

1� ⇠


ln

✓
p
2
3

µ̄2

◆
+ ln

�
4⇠(1� ⇠)

��
�

⇠(1 + ⇠)

1� ⇠

◆

+(1)

, 0 < ⇠ < 1

✓
�
1 + ⇠

2

1� ⇠
ln

✓
�⇠

1� ⇠

◆
� 1 +

3

2(1� ⇠)

◆

+(1)

�
3

2(1� ⇠)
, ⇠ < 0

+
↵sCF

2⇡
�(1� ⇠)

✓
3

2
ln

✓
µ
2
F

4µ̄2

◆
+

5

2

◆
. (38)

For the rest of this paper, we will employ the usual choice of renormalization and factorization scales, µF=µ̄. Eq. (38)
has an imbalance when integrated, because �̃�0 outside the physical region picks up a logarithmic divergence in
the momentum fraction as ⇠ ! ±1, while this divergence has already been removed from the self-energy part in
Eq. (36). This implies an anomalous non-conservation of the quark number, even if the classical current is conserved.

In Ref. [43], CMS
�0 has also been computed and a plus prescription at infinity was used to cancel the UV divergences

between the vertex and self-energy corrections. This explains the source of the di↵erence between our result in Eq. (38)
and that in Eq. (68) of Ref. [43]. Namely, in our case, the term proportional to the Dirac �-function depends on the
ratio of the factorization and renormalization scales, while in the case of Ref. [43], it depends on the quark momentum
p3. Both prescriptions, however, do not conserve quark number.

To treat the unbalanced divergence, we introduce a modified MS scheme (MMS), which has already been discussed
in the previous section and used in our previous work [19, 20]. In this scheme, an extra subtraction is made outside
the physical region of the unintegrated vertex corrections, which, in practice, renormalizes the ⇠-dependence for ⇠ > 1
and ⇠ < 0 and removes the potential divergences,

Z̃
MMS
�
�0

(⇠) = 1�
↵s

2⇡
CF

3

2

✓
�
1

⇠
✓(⇠ � 1)�

1

1� ⇠
✓(�⇠)

◆
�

↵sCF

2⇡
�(1� ⇠)

✓
3

2
ln

✓
1

4

◆
+

5

2

◆
. (39)

One can write Eq. (39) in z-space, noticing that ⇠ outside the physical region is now renormalized, at the scale µ̄.
The inverse Fourier transform is then from ⇠ to zµ̄, and the extra subtraction in z-space is written as

Z
MMS
�
�0

(zµ̄) = 1�
↵s

2⇡
CF

✓
3

2
ln

✓
1

4

◆
+

5

2

◆

+
3

2

↵s

2⇡
CF

✓
i⇡

|zµ̄|

2zµ̄
� Ci(zµ̄) + ln(zµ̄)� ln(|zµ̄|)� iSi(zµ̄)

◆

�
3

2

↵s

2⇡
CF e

izµ̄

✓
2Ei(�izµ̄)� ln(�izµ̄) + ln(izµ̄) + i⇡sgn(zµ̄)

2

◆
. (40)

For consistency, Eq. (40) has been also applied to the renormalization functions to bring them to the MMS scheme, as
described in Sec. IVC. Thus, these renormalization functions are obtained as follows: the Z-factors calculated in the
RI0 scheme are converted to the MS scheme according to the perturbative formulae of Ref. [21] and then multiplied
by the factor given in Eq. (26) to convert them to the MMS scheme. An important self-consistency check is that the
expression of Eq. (40) must cancel the z ! 0 divergence in ln

�
z
2
�
present in the MS scheme [21, 45]. Indeed, in the

limit z ! 0, one has:

Z
MMS
�
�0

(z ! 0) = 1�
↵sCF

2⇡

✓
3

2
ln

✓
µ̄
2
z
2
e
2�E

4

◆
+

5

2

◆
= Z

ratio
�
�0

(zµ̄), (41)

i.e. the Z-factor of the vertex corrections at z=0 is the same in our scheme and in the “ratio” scheme introduced in
Ref. [43] and both cancel the divergence. The latter scheme was proposed as an alternative to our solution of the
current conservation problem when using the pure MS expression of Eq. (68) of Ref. [43]. The “ratio” scheme is another
modification of the MS scheme that also needs an additional conversion factor in order to bring the renormalization

• C. Alexandrou et al. (ETMC), PRD99 (2019)

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018); 
• A. Radyushkin, PLB781 (2018).
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Comparison between ratio and 
MMS schemes

�17

• Conversion factors:

∫
zmax

−zmax

d(zpz)
2π

eiξzpz Z MMS/Ratio
Γγ0 (zμ) ≠ CMS(ξ,

μ
pz

) − CMMS/Ratio(ξ,
μ
pz

)

In collaboration 
with Yu-Sheng Liu

Pz = 3.0 GeV; μ = 3.0 GeV; pR
z = 2.2 GeV; μR = 3.7 GeV; αs = 0.258.
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Power corrections

• Mass correction (! ) 

• Derived to all power orders 

• Higher-twist correction (! ) 

• Unconstraint in lattice calculations so far; 

• Uncontrolled at small x ( ! ) and large x ( ! )? 

• Extrapolating final results to !  with ! ?

M2/P2
z

Λ2
QCD/(x2P2

z )

x → 0 x → 1

Pz → ∞ A(x) + B(x)/P2
z

�18

• Chen et al. (LP3), NPB911 (2016)

• Braun, Vladimirov and Zhang, PRD99 (2019)

q(x) ⋅ O (
Λ2

QCD

x2(1 − x)P2
z )
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Lattice calculations

• Lattice Parton Physics Project (LP3) Collaboration 

• European Twisted Mass Collaboration 

• SBU-BNL Group 

• ! -QCD Collaborationχ

�19



Yong Zhao, POETIC 2019

Lattice calculations

�20

• X. Ji, J.-H. Zhang, and Y.Z., PRL111 (2013); X. Ji, J.-H. Zhang, and Y.Z., PLB743 (2015); Y. Hatta, X. Ji, 
and Y.Z., PRD89 (2014); 

• Y.-B. Yang, R. S. Suffian, Y.Z., et al. (χQCD), PRL118 (2017).

First lattice calculation of gluon spin (2017)

Up-to-date experimental fit: 
de Florian, et al., PRL113 (2014). {

∫
0.05

0.001
dxΔg(x)

∫
1

0.05
dxΔg(x)

Q2 = 10 GeV2

Pz(GeV)ΔG ≈ SG(∞) = 0.251(47)(16)

SG Q2 = 10 GeV2
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Lattice calculations

• Iso-vector quark PDFs of the proton:

�21

u(x) − d(x)

5

to plan improved calculations with total uncertainty less
than 10%. 2) With the promising results shown here, we
can proceed with similar analyses for the less known po-
larized PDFs, such as helicity and transversity (the lon-
gitudinal and transversely polarized PDFs), where the
isovector PDFs needed to make impacts for global anal-
ysis are less demanding than the unpolarized ones.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3

4

x

qu
-
d

CT14
matched PDF

FIG. 4. Our final PDF renormalized at 3 GeV and compared
with CT14 [63] at (µR, p

R
z ) = (3.7, 2.2) GeV. It is consistent

with NNPDF3.1 distribution [64] and CJ15 [65]. Our results
agree nicely with the global-analysis PDF.

Summary and Outlook: In this work, we report the
state-of-the-art isovector unpolarized quark distribution
using lattice QCD directly at physical pion mass. We
use nucleon boosted momenta as large as 3 GeV with
high-statistics analysis. We carefully study excited-state
systematics whose error is reflected in our final distribu-
tion uncertainty. We renormalize our nucleon matrix el-
ement using the nonperturbative RI/MOM renormaliza-
tion, and perform the LaMET one-loop finite-momentum
matching and conversion to MS-scheme to connect lattice
quasi-distribution to lightcone distribution. We found
our final distribution agree well with the global analysis
distribution. We carefully examine all possible system-
atics which will give us better guideline to improve our

future calculations and provide better precision distribu-
tions. Future direction will be investigating smaller lat-
tice spacing ensembles for reaching even higher boosted
momentum such that we can push toward smaller-x re-
gion.
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results, since there is no known functional form for the P3

dependence for the infinite momentum limit extrapolation.
The interplay between real and imaginary parts of

renormalized matrix elements leads to unphysical oscil-
lations in quasi-PDFs, resulting from the periodicity of the
Fourier transform, and propagated through the matching
procedure to light-cone PDFs. The effect is naturally
suppressed for large nucleon boosts, when matrix elements
decay to zero fast enough, before the term e−ixP3z of Eq. (1)
can lead to negative results. For the currently attained
momenta, the decay of renormalized matrix elements is still
relatively slow, which manifests itself in distorting the
approach of the PDFs to zero for x≳ 0.5 and in reaching an
unphysical minimum in the antiquark part, for x ≈ −0.2.
The oscillations, as expected, are smoothened out as the
momentum increases (which is visible particularly at the
level of quasi-PDFs) and are more severe in the antiquark
region. Nevertheless, this is the first time when clear
convergence towards phenomenological PDFs (and partly
even agreement with them) is demonstrated with simula-
tions using a physical pion mass value. Clearly, momentum
6π=L is not high enough to reconstruct light-cone PDFs.
However, we do observe a qualitatively similar behavior
between the LQCD data at the largest momentum and the
phenomenological results, with some overlap in the small-x
region. The slope of the two curves is compatible for the
positive-x region, and both curves go to zero for x≲ −0.4
and x≳ 1.
In Fig. 3, we present the polarized PDFs for our three

values of the momentum, together with DSSV08 [58],
NNPDF1.1pol [59], and JAM17 [60] data. We find a milder
dependence on the nucleon momentum, and, for the third
largest momentum, the results are closer to phenomeno-
logical curves with significant overlap with them for
0 < x < 0.5. For the region 0.5 < x < 1, the slope of
the lattice QCD curves changes, possibly due to the

oscillations mentioned above, but they still approach zero
around x ¼ 1. For the negative-x region, the lattice QCD
curves also approach zero, with a dip at small x and large
uncertainties, which is another consequence of oscillations.
Given that the lattice QCD results are extracted without
any assumptions on the functional form, unlike what is
done in phenomenological fits, this qualitative agreement is
very promising. We note that after eliminating the problem
of oscillations and addressing possible higher-twist con-
tamination, the large-x region is expected to be the most
reliable, since the access to the very small-x region is
limited by the lattice size.
Finally, we discuss the role of having simulations with

physical pions. In Fig. 4, we compare phenomenological
curves with results from Ref. [27] obtained using an
ensemble with mπ ≈ 375 MeV and volume 323 × 64,
referred to as the B55 ensemble. As P3 increases, the
results from this ensemble reach a universal curve.
However, they are clearly different from the phenomeno-
logical curves. When we compare the curves from the B55
ensemble to those obtained using the ensemble of this
Letter, both at momentum ∼1.4 GeV, we observe a clear
pion mass dependence. This is compatible with the pion
mass dependence seen in the isovector quark momentum
fraction hxiu−d computed within LQCD. For ensembles at
heavier than physical pion masses, hxiu−d is larger [61],
which corresponds to a shift of the curve of the PDF to
larger values of x, as indeed observed in the B55 data.
Conclusions and prospects.—In this Letter, we extracted

PDFs from lattice QCD simulations, a task that was
considered one of the most important aims of lattice hadron
structure computations and yet practically unfeasible only a
few years ago. The steps addressed in order to achieve this
task comprise significant conceptual developments, such as
nonperturbative renormalization, target mass corrections,
matching, and the development of a lattice technique,
momentum smearing, that enables computations for large

FIG. 2. Comparison of unpolarized PDF at momenta 6π=L
(green band), 8π=L (red band), and 10π=L (blue band). The
results from the phenomenological analysis of ABMP16 [56]
(NNLO), NNPDF [57] (NNLO), and CJ15 [55] (NLO) are
displayed for illustrative purposes. Logarithmic scale is used
in the x axis (down to jxj ¼ 0.035) for better visibility.

FIG. 3. Comparison of polarized PDF at momenta 6π=L (green
band), 8π=L (red band), and 10π=L (blue band), DSSV08 [58],
NNPDF1.1pol [59], and JAM17 NLO phenomenological data
[60]. Logarithmic scale is used in the x axis (down to jxj ¼ 0.035)
for better visibility.
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Lattice calculations

• Iso-vector quark PDFs of the proton:

�22

δu(x) − δd(x)

4

The plus prescriptions in Eq. (5) are all at ⇠=1. The
contributions outside the physical region in Eq. (5)
have their origin exclusively in the one-loop correc-
tion to quasi-PDF. Conversely, quasi-PDFs are UV fi-
nite inside the physical region. Thus, unlike light-
cone PDF, the UV divergence in quasi-PDF appears
when integrating the momentum fraction in the one-
loop wave-function correction to ±1. These divergences,
which behave as �2/⇠ (⇠>1)and �2/(1�⇠) (⇠<0), have
been subtracted in Eq. (5). From the Ward identity,
the integrated one-loop vertex correction is renormal-
ized by the same terms. This ensures that the norm
of the distributions is automatically preserved by the
matching, i.e.

R1
�1 dxh1(x, µ)=

R1
�1 dxeh1(x, µ, P3), andR1

�1 d⇠ �C(⇠, ⇠µ
xP3

)=1 that holds for every value of P3.
Because particle number conservation is built inside the
matching, the finite limits of integration imposed by the
lattice data also conserve the norm.

Final Results: A combination of the renormalization,
matching procedure and application of the TMCs allow
the reconstruction of light-cone PDFs, which we present
in this section. In Fig. 2, we show the e↵ect of each
step of this procedure for P= 10⇡

L , i.e. we start with the

renormalized quasi-PDF (ehu�d
1 ), apply matching (h0

1
u�d)

and finally include TMCs (hu�d
1 ), which leads to the fi-

nal estimate of the transversity PDF. As can be seen,
application of the matching shifts the peak of the distri-
bution towards x=0 and increases it, as expected. We
also find that TMCs are small, but non-negligible, and
mostly a↵ect the small-x region.

-1 -0.5 0 0.5 1

0

2

4

FIG. 2: Renormalized quasi-PDF, ehu�d
1 (green), PDF after

matching, h0
1
u�d (orange) and after TMCs, hu�d

1 (blue), as a
function of Bjorken-x for P= 10⇡

L .

Our final results are shown in Fig. 3 at a scale of
p
2

GeV (hu�d,lattice
1 ). For clarity we only show P= 10⇡

L ,
as the dependence on the nucleon momentum is small
for most regions of x. We find that for the large and
positive x region, the data at momentum P= 10⇡

L have

milder oscillatory behavior, an e↵ect that originates from
the use of finite momentum. As can bee seen in the
plot, hu�d,lattice

1 in the large negative-x nicely approach
zero. For demonstration purposes, we include in the
same plot phenomenological fits on SIDIS data [21], as
well as SIDIS data constrained using lattice estimates of
gT (“SIDIS+lattice”) [21]. The statistical uncertainties
of the lattice PDFs are strikingly smaller than the phe-
nomenological fits of the SIDIS data. This also holds for
the “SIDIS+lattice” data that have much smaller uncer-
tainties than the unconstrained SIDIS values. The com-
parison favors the direct extraction of the transversity
PDF using the quasi-PDFs method, in terms of uncer-
tainties and reliability in the extraction. Using the data
at P= 10⇡

L , we obtain gT=1.10(34) by integrating over
x within the interval [�1, 1]. This value can be com-
pared with the renormalized Mh1(P, 0) that gives a value
gT=1.09(11), which is compatible with the aforemen-
tioned integration and with the extraction in Ref. [63].

-1 -0.5 0 0.5 1

0

2

4

FIG. 3: Transversity PDF for P= 10⇡
L (blue) as a function

of Bjorken-x. The phenomenological fits have been obtained
using SIDIS data (grey) [21] and SIDIS data constrained using
glatticeT (purple) [21].

Summary and Prospects: This paper presents a state-of-
the-art direct calculation of the transversity PDF for the
isovector flavor combination. The novelty of this work is
the improvement of the computation in all fronts, that
is, simulations at physical quark masses [45, 64], employ-
ment of a non-perturbative renormalization program [55],
and application of a cut-o↵ independent and renormal-
ized matching between quasi-PDFs and light-cone PDFs;
the latter was developed in this work.
A number of careful investigations have been per-

formed to study systematic uncertainties. We find that
excited states are suppressed for a source-sink separa-
tion of 1.12 fm and nucleon momentum up to 1.4 GeV.
The twisted mass formulation has the advantage of auto-
matic O(a)-improvement, and calculation of the disper-
sion relation indicates small cut-o↵ e↵ects. Another in-
vestigation is the extraction of the tensor charge found to

LP3

JAM17

LMPSS17
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Y.-S. Liu, Y.Z., et al. (LP3), arXiv:1810.05043.

ETMC collaboration, PRD98 (2018).
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Lattice calculations

• Valence quark distribution of the pion:
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Zhang et al. (LP3), PRD100 (2019). Izubuchi et al., PRD100 (2019).

15

FIG. 15. Top panels: The RI-MOM renormalized qPDF matrix element in real space h
R

�t
(z, Pz, PR) at pion momenta Pz = 0.82, 1.29 and 1.72

GeV are shown at fixed RI-MOM renormalization scale (PR

z
, PR

?
) = (1.29, 2.98) GeV. The red and blue points are the real and imaginary parts

of the actual data respectively. The bands were obtained by fitting the two-parameter phenomenologically motivated real space qPDF matrix
element to the data over a range z 2 [�zmax, zmax] – the solid band is for zmax = 1.44 fm and patterned one for zmax = 0.72 fm. Bottom panels:
The two parameter u � d PDF fu�d(x) (dashed lines) at µ = 3.2 GeV, and the matched qPDFs q̃u�d(x) (1-� error bands) that describe the real
space qPDF on the top panels are shown. To avoid clutter, only the central values of fu�d(x) are shown as dashed lines. The results from
di↵erent zmax are shown in red and blue.
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⇡ v
(x
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x

�t; Pz = 1.72 GeV
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FIG. 16. The top and bottom panels show our estimated pion valence PDF at µ = 3.2 GeV using �t qPDF at Pz = 1.29 and 1.72 GeV
respectively. The results using multiple RI-MOM scales (PR

z
, PR

?
) are shown using di↵erent colored error bands. On the left panels, the results

for f
⇡
v

(x) are shown, while on the right panels the results for x f
⇡
v

(x) are shown. For all the cases shown, the fit range was held fixed at
zmax = 0.98 fm. The solid line (with a small error band around) is the JAM result [59] for pion valence PDF at the same µ.



Yong Zhao, POETIC 2019

Lattice calculations

• Light-cone distribution amplitudes:
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Chen et al (LP3)., NPB939 (2019)

9

FIG. 5. (Left) Improved kaon quasi-DA, �̃imp
K�(x) (blue), kaon DA with one-loop matching applied, �imp,match

K� (green), and
�K� (red) with the meson-mass correction, which is a very small e↵ect, further added. The asymptotic DA is shown as the
purple dashed line. (Right) DAs for K� after the one-loop matching and mass corrections but not higher twist corrections are
shown with each Pz we study in this work.

Lat LaMET
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DSE-1

DSE-2

LFCQM
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FIG. 6. Comparison of �K� of this work (“Lat LaMET”) to a few selected works in literature. This includes a parametrized
fit to lattice moments (“Lat Mom”) [52, 53], the Dyson- Schwinger equation calculation (DSE-1 & -2) [56], and a light-front
constituent quark model (LFCQM) [55]. The error in the “Lat LaMET” curve is statistical error only. A broader distribution
than the one predicted in LFCQM is clearly preferred; further studies are planned to investigate the nonzero distribution
outside x 2 [0, 1] together with the systematics from unphysical pion mass, nonzero lattice spacing and finite volume.

the distribution form of x↵(1 � x)� . Our �K� noticeably has smaller peak near x = 0.5; this is mainly due to the
sizable distribution outside the [0, 1] region, since the integral of the kaon DA is normalized to 1. Therefore, the DA
has to have a smaller peak to produce the same integral. We plan to study the higher-loop matching as well as go to
large Pz to reduce the Fourier-transformation truncation e↵ects.

D. SU(3) Symmetry in Meson Distribution Amplitudes

In this work, we also update our previous study [32] of the pion DA and make the first study of the ⌘s case.
Fig. 7 shows both DAs obtained after the one-loop matching and mass corrections (but not higher-twist corrections
at O(⇤2

QCD/P
2
z )). Larger boost momentum (with specifically tuned momentum-smearing parameters) and higher

statistics are used in this work for �⇡. The dominant systematic uncertainty, due to the counterterm �m using a
single spacing in the previous study, is significantly improved with the use of 3 lattice-spacing determinations in
this work. We also observe that both �⇡ and �⌘s are symmetric with respect to x = 1/2 due to charge-conjugation

11

Lat LaMET

Lat Mom 1

Lat Mom 2

DSE
Asymp

Belle

LFCQM
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FIG. 8. Comparison of �⇡ from this work (“Lat LaMET”) to previous determinations in literature. In the left panel, this
includes the results from parametrized fits to the lattice moments (“Lat Mom 1” and “Lat Mom 2”) [58], a calculation from
the DSE analysis (DSE) [56], one from the LFCQM (LFCQM) [55], a fit to the Belle data (Belle) [57], and the asymptotic form
6x(1 � x) (Asymp). The error in the “Lat LaMET” curve is statistical error only. In the right panel, we have converted our
result on �⇡ to the prediction for the scalar-pseudoscalar current correlator (blue curve), and compared with the lattice data

for the same correlator in Ref. [44] (dark, gray and white circles, which correspond to |~P | = 1.08, 1.53, 1.88 GeV, respectively, µ
is the renormalization scale). Systematics from unphysical pion mass, nonzero lattice spacing and finite volume have not been
quantified and included in this calculation.

FIG. 9. Results for flavor SU(3) symmetry breaking: �SU(3),1 = (�K���K+)/2 (left) and �SU(3),2 = (�⇡+3�⌘�2�K+�2�K�)/8
(right) using the corrected distribution of Pz = 8⇡/L. Our results support the ChPT [7] prediction |�SU(3),1| > |�SU(3),2|.

ChPT [7] predicts the magnitude of �SU(3),1 to be O(mq) while the magnitude of �SU(3),2 is O(m2
q); thus, the lattice

results should see |�SU(3),1| > |�SU(3),2|.

Fig. 9 shows the Bjorken-x dependence of both �SU(3),1 (left) and �SU(3),2 (right) at the largest boost momentum
Pz = 8⇡/L. �SU(3),1 shows a clear sign of the skewness in the kaon. |�SU(3),1| > |�SU(3),2| within x 2 [0, 1] (except
when x is close to 1/2 where �SU(3),1 = 0), so the ChPT prediction is indeed supported by our lattice study. In
addition, �SU(3),2 is consistent with zero within the statistical errors at the pion mass of 310 MeV. Future studies at
lighter pion mass can check the quark-mass dependence directly.

Finally, we discuss a possible cause of the non-monotonic Pz dependence in our extracted DA’s after we have
corrected for the one loop matching kernel and the all order mass corrections. Here we take the asymptotic DA
6x(1� x), Fourier transform it to the z space, truncate the region outside of z = [�L/2, L/2], then Fourier transform
it back to the x space. The resulting truncated asymptotic DA is shown in Fig. 10 where a non-monotonic Pz

dependence is seen at x = 1/2, similar to other meson DAs we obtained above. This example demonstrates that the
truncated Fourier transform could cause an error that is non-monotonic in Pz which needs to be taken into account
in the Pz ! 1 extrapolation.
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Systematics

• Excited contamination at large hadron momentum 

• Discretization effects, unknown nonperturbative contributions in the RI/
MOM renormalization constant 

• Finite volume effects? 

• Fourier transform 

• Power corrections 

• Perturbative matching 
• Inversion of matching coefficient 
• Direct matching or fitting the PDF? 
• Higher-order perturbative matching

�25

• C. Alexandrou et al. (ETMC), PRD99 (2019) 
• Y. S. Liu, Y.Z., et al. (LP3), arXiv:1807.06566

• Izubuchi et al., PRD100 (2019)

• Lin et al. (LP3), PRD 98 (2018) 
• C. Alexandrou et al. (ETMC), PRD99 (2019)

C−1(x /y) = [δ (1 −
x
y ) + αsC(1)(x /y) + 𝒪(α2

s )]
−1

≈ δ (1 −
x
y ) − αsC(1)(x /y) + 𝒪(α2

s )

• Briceno, Guerrero, Hansen and Monahan PRD99 (2018)

q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
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Other approaches

• Ioffe-time or pseudo distribution (position-space 
representation of the quasi-PDF) 
• Nonperturbative renormalization 

• Factorization or OPE formula at short distance in position space

�26

⟨P ≠ 0 | ψ̄0(z) Γ
2 W0[z,0]ψ0(0) |P ≠ 0⟩

⟨P = 0 | ψ̄0(z) Γ
2 W0[z,0]ψ0(0) |P = 0⟩

A. Radyushkin, PRD96 (2017); K. Orginos et al., PRD96 (2017).

⟨P | Õ(z, μ) |P⟩
2Pz

= ∑
n=0

Cn(μ2z2)
(−izPz)n

n!
an+1(μ)[1 − O( M2

P2
z

)] + O(z2Λ2
QCD)

= ∫
1

−1
dα 𝒞(α, z2μ2) ∫

1

−1
dy e−iαyPzzq(y, μ)

• A. Radyushkin, PLB781 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).
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Other approaches

• Ioffe-time or pseudo distribution (position-space 
representation of the quasi-PDF)
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Figure 18. The nucleon valence distribution obtained from the ensemble a127m415L fit to
the form used by the JAM collaboration in Eq. (4.4). The �2/d.o.f. for the fit with all the
data is 2.1(6). The uncertainty band is obtained from the fits to the jackknife samples of the
data. The resulting fits are compared to phenomenologically determined PDF moments from
the NLO global fit CJ15nlo [69], and the NNLO global fits MSTW2008nnlo68cl_nf4 [72] and
NNPDF31_nnlo_pch_as_0118_mc_164 [73] all evolved to 2 GeV.

Figure 19. The nucleon valence distribution obtained from the ensemble a094m390 fit to
the form used by the JAM collaboration in Eq. (4.4). The �2/d.o.f. for the fit with all the
data is 2.0(5). The uncertainty band is obtained from the fits to the jackknife samples of the
data. The resulting fits are compared to phenomenologically determined PDF moments from
the NLO global fit CJ15nlo [69], and the NNLO global fits MSTW2008nnlo68cl_nf4 [72] and
NNPDF31_nnlo_pch_as_0118_mc_164 [73] all evolved to 2 GeV.

For this fit, data with the same Ioffe time are averaged and the z2 dependence is neglected.
Due to the discretization of the allowed nucleon momentum p, the evolved reduced pseudo-
ITD M(⌫) is calculated for a different set of ⌫ on configurations with different lattice lengths
L, and therefore some ⌫ are in common between both ensembles but far from all of them.
The results of these fits as well as the extrapolation to the continuum limit are shown in
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Figure 18. The nucleon valence distribution obtained from the ensemble a127m415L fit to
the form used by the JAM collaboration in Eq. (4.4). The �2/d.o.f. for the fit with all the
data is 2.1(6). The uncertainty band is obtained from the fits to the jackknife samples of the
data. The resulting fits are compared to phenomenologically determined PDF moments from
the NLO global fit CJ15nlo [69], and the NNLO global fits MSTW2008nnlo68cl_nf4 [72] and
NNPDF31_nnlo_pch_as_0118_mc_164 [73] all evolved to 2 GeV.

Figure 19. The nucleon valence distribution obtained from the ensemble a094m390 fit to
the form used by the JAM collaboration in Eq. (4.4). The �2/d.o.f. for the fit with all the
data is 2.0(5). The uncertainty band is obtained from the fits to the jackknife samples of the
data. The resulting fits are compared to phenomenologically determined PDF moments from
the NLO global fit CJ15nlo [69], and the NNLO global fits MSTW2008nnlo68cl_nf4 [72] and
NNPDF31_nnlo_pch_as_0118_mc_164 [73] all evolved to 2 GeV.

For this fit, data with the same Ioffe time are averaged and the z2 dependence is neglected.
Due to the discretization of the allowed nucleon momentum p, the evolved reduced pseudo-
ITD M(⌫) is calculated for a different set of ⌫ on configurations with different lattice lengths
L, and therefore some ⌫ are in common between both ensembles but far from all of them.
The results of these fits as well as the extrapolation to the continuum limit are shown in

– 30 –

• Joo, Karpie et al., 1908.09771

a127m415 a094m390
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Other approaches

• Extracting higher moments 

• Small |z| needed to suppress higher twist corrections; 

• With suppression factor ! , higher moment contributions need 
larger !  to beat the statistical errors in the correlator; 

• Large momentum !  is the key.

(zPz)n/n!
(zPz)

Pz

�28

⟨P | Õ(z, μ) |P⟩
2Pz

= ∑
n=0

Cn(μ2z2)
(−izPz)n

n!
an+1(μ)[1 − O( M2

P2
z

)] + O(z2Λ2
QCD)

Here  (1)(z) is the polygamma function defined as  (1)(z) = d2 ln�(z)/dz2 with �(z)

being the �-function. With the Wilson coe�cients computed we can now obtain the MS

moments up to O(↵2
s, z

2) directly from the reduced function M(⌫, z2) as

an+1(µ) = (�i)n
1

cn(z2µ2)

@nM(⌫, z2)

@⌫n

����
⌫=0

+O(z2,↵2
s) . (3.14)

Note that in order to do so one needs a precise computation of M(⌫, z2) in the small ⌫

region at fixed z2. This is the region in which lattice computations can easily achieve high

precision.
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Figure 1. Left: The first and second derivative of M(⌫, z2) with respect to ⌫ at ⌫ = 0 rescaled
by i as defined in Eq. (3.6). Right: The two lowest moments of the isovector unpolarized PDFs
at µ = 3 GeV versus z2. The shaded error bands are the QCDSF results for the same pion mass
(⇡ 600 MeV) obtained from [32] at the same scale µ = 3 GeV. At low z2 the perturbative matching
seems to work well as indicated by the independence of the moment on z2.

To illustrate this procedure we take as an example a recent quenched QCD calcu-

lation [16] which can be compared with the results from [32] where the moments where

obtained through direct computations of the matrix elements of twist-2 operators. In [16],

the reduced isovector Io↵e time pseudo-PDF was computed at a fixed coupling � = 6.0

in quenched QCD using the Wilson gauge action and Clover improved valence fermions.

The lattice spacing in this computations is 0.093 fm. The same quenched theory was also

used in [32] to study the moments of PDFs from direct computations of the corresponding

twist-2 nucleon matrix elements, however in this case Wilson fermions were used for the

valence quarks. The two calculations have very di↵erent systematics and most importantly

di↵erent discretization errors due to the use of two di↵erent valence fermion actions that

di↵er by O(a) e↵ects. Nonetheless, it is instructive to check if the moments computed from

the reduced Io↵e time PDF agree within these expected systematic e↵ects with the direct

computation. For our comparison the pion mass is set in both cases to m⇡ ⇡ 600 MeV.

On the left panel of Fig. 1, we plot the left hand side of Eq. (3.6). These are the

derivatives of M(⌫, z2), rescaled by powers of i, at ⌫ = 0. The derivatives of M(⌫, z2) are

estimated numerically from its real and imaginary parts, using finite di↵erence derivatives

– 7 –

• Joo, Karpie et al., JHEP 1811 (2018) 178
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FIG. 10. The same as in Fig. 8, but for the VA+AV correlation
function.

TABLE II. Fit results for the Gegenbauer coe�cients a⇡
2

and a⇡
4 as well as the higher-twist normalization constant �⇡2 .

We consider three di↵erent DA parametrizations (which are
all defined at the reference scale 2 GeV) and various fit ranges
in µ = 2��z�. Ansatz A corresponds to assuming the shape (10),
while B and C use the expansion of the DAs in terms of Gegen-
bauer polynomials, Eq. (6), truncated at n = 2 and n = 4. The
numbers in parentheses give the statistical error. As discussed
in the main text, a rather generous systematic uncertainty of
30%–50% should be assigned to these results and the val-
ues for a⇡

4 from Ansatz A and B are meaningless. The fit
range corresponding to the curves plotted in Figs. 8–10 is
highlighted.

Ansatz a⇡
2 a⇡

4 �⇡2 [GeV2
]

0.9 GeV < µ < 1.8 GeV
A 0.29(2) 0.16(2) 0.202(3) ↵ = 0.17(5)

I B 0.28(2) 0.0 0.202(3)
C 0.28(4) 0.0(0.6) 0.202(4)

1.0 GeV < µ < 1.8 GeV
A 0.31(3) 0.17(2) 0.223(4) ↵ = 0.13(5)

II B 0.30(3) 0.0 0.223(4)
C 0.26(5) −1.1(0.9) 0.225(4)

1.1 GeV < µ < 1.8 GeV
A 0.36(3) 0.22(3) 0.242(4) ↵ = 0.05(5)

III B 0.35(3) 0.0 0.242(4)
C 0.29(6) −1.6(1.2) 0.244(4)

1.0 GeV < µ < 1.5 GeV
A 0.30(3) 0.17(2) 0.218(4) ↵ = 0.15(5)

IV B 0.30(3) 0.0 0.219(4)
C 0.22(5) −1.7(0.9) 0.222(4)

1.0 GeV < µ < 1.3 GeV
A 0.26(3) 0.14(2) 0.202(4) ↵ = 0.22(6)

V B 0.26(3) 0.0 0.202(4)
C 0.09(5) −3.6(0.9) 0.209(4)

errors. In order to gain some insight, we have performed
the complete analysis for multiple fit ranges in the dis-
tance between the currents. A dependence on the lower
bound in the distance (corresponding to larger scales)
can indicate discretization e↵ects, while a dependence on
the upper bound shows the necessity to calculate higher-
order corrections to the coe�cient functions and, possi-
bly, even higher-twist corrections. Such e↵ects are clearly
visible, cf. Table II. As a second method to estimate the
systematic uncertainty, one may assume that not-yet-
calculated higher order perturbative e↵ects are of the size
of ∼ 50% of the one-loop correction. Both error estima-
tion methods lead to the conclusion that, for the time
being, one has to assign a systematic error of at least
30%–50% to the given numbers for a⇡

2
and �⇡

2
, especially

since other systematic uncertainties originating from an
unphysically large pion mass as well as finite volume and
lattice spacing corrections have not been addressed in
this study.
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C. Discussion

Within the present range of distances and momenta,
our data appear to be very sensitive to higher-twist cor-
rections. These corrections can be quantified within our
approach, and the corresponding parameter �⇡

2
proves to

be only weakly correlated with the shape parameters of
the pion DA. This can be explained as follows.

First, it is crucial that perturbative and higher-twist
corrections for the VV+AA and PS+SP correlators have
similar magnitude and opposite sign, cf. Fig. 7. The
higher-twist corrections contribute mostly to the di↵er-
ence of these two correlation functions, and much less to
their sum. The e↵ect of adding the a⇡

2
parameter to the

leading-twist pion DA is just the opposite; i.e., it a↵ects
both VV +AA and PS + SP correlators in a similar way.
Second, writing the correlation functions �XY

⇡ (p · z, z2)
as an expansion in conformal partial waves similar to
Eq. (8) for the DA, one can include higher-twist terms as
contributions O(z2) to the Gegenbauer coe�cients; see
Ref. [12] for details. It turns out that this correction is
largest for the leading term a⇡

0
� a⇡

0
(z2) = a⇡

0
+c�⇡

2
z2+ . . .

and a↵ects a⇡
2
and higher coe�cients rather weakly. As

a consequence, the higher-twist parameter �⇡
2
can be ex-

tracted from position space correlators at small values
of �p · z�, which explains its small statistical error.

Note, however, that the obtained value is tied to using
first order perturbative corrections O(↵s) to the corre-
lators, and will likely decrease if further terms are taken
into account. This ambiguity is conceptual. It is re-
lated to the fact that matrix elements of twist-4 oper-
ators have quadratic power divergences already in the
continuum theory and at the same time the perturba-
tive series in leading twist in the minimal subtraction
scheme su↵ers from factorial divergences (renormalons).
One can show [84] that these two deficiencies are related
and are cured in the sum of perturbative (leading-twist)
and nonperturbative (higher-twist) e↵ects. The higher-
twist contribution, strictly speaking, should be viewed as
an e↵ective parametrization of the sum of the uncalcu-
lated higher orders of perturbation theory and “genuine”
higher-twist e↵ects; their separation requires additional
regularization and is not necessary in the present context.

Our result for a⇡
2

has good statistical accuracy and
all parametrizations of the DA lead to similar values
that are somewhat larger than the result from the di-
rect calculation of the second moment in Ref. [20], a⇡

2
=

0.1364(154)(145) (at 2 GeV). This should not be viewed
as a contradiction as the systematic errors in the present
study are not yet under control. They will decrease sig-
nificantly in the future, especially if one could reach val-
ues of �p·z� � 5, which would also allow us to start probing
the next Gegenbauer coe�cient, a⇡

4
.

The leading-twist DAs obtained from Ansätze A and B
with fit range II are plotted in Fig. 11. Note that the
error bands only show the statistical error and that the
systematic uncertainty (cf. fit range variation in Table II)
is considerably larger. Both DAs shown in Fig. 11 are in

�0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

�
⇡
(u

)

FIG. 11. The orange and turquoise bands correspond to
DAs at a reference scale µ0 = 2 GeV obtained from the fits
to parametrizations A and B for fit range II, cf. Table II.
Both DAs lead to an equally good description of our data
because they have a similar second Gegenbauer coe�cient a⇡

2 ,
which is the only physically relevant information needed from
the DA at the available range of p · z. Note that the error
only includes the statistical error for the used fit range and
that the systematic uncertainty is considerably larger. For
comparison, we have also included a result obtained using the
quasidistribution approach (dashed line) taken from Ref. [28].

perfect agreement with our data since they yield similar
values for a⇡

2
, which is, as discussed above, the only pa-

rameter that is relevant for the description of the data
within the range of p ·z that is currently available. In or-
der to distinguish these DAs from each other, one would
need data at larger �p · z� values that are sensitive to
higher Gegenbauer coe�cients. Our results favor DAs
that, at a scale of 2 GeV, are considerably broader than
the asymptotic DA.

VI. CONCLUSION AND OUTLOOK

In this work, we demonstrate that the method pro-
posed in Ref. [12] for the determination of collinear par-
ton distributions does not only lead to qualitatively ap-
pealing results (see our first article on the topic [11]) but
is indeed capable of producing quantitative results with
surprisingly small statistical errors. The latter is possible
due to the combination of momentum smearing (improv-
ing the signal for hadrons with large momentum) with
stochastic estimation. A main characteristic of our ap-
proach is that we use an equal-time correlation function
of two local currents, connected by a light quark prop-
agator, instead of a nonlocal operator, connected by a
Wilson line gauge transporter. This has multiple advan-
tages:

1. We circumvent problems originating from the
renormalization of nonlocal operators entirely,
since the local currents we use can be renormalized
using well-tested standard methods.

⟨0 |J†
X(

z
2

JY(−
z
2

)) |π0(p)⟩ = fπ
z ⋅ p

2π2z4

∞

∑
n=0

HXY
n (z ⋅ p, μ)aπ

n(μ) .

• Bali et al., PRD98 (2018)
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Pion distribution amplitude and lattice OPE Santanu Mondal

1. Introduction

Numerical implementation of lattice field theory is normally carried out in Euclidean space.
Therefore it is challenging to apply lattice QCD to extract reliable results in parton physics, which
involves non-perturbative dynamics on the light cone. For this reason, the traditional approach
to extracting various parton distribution functions (PDF’s) and light-cone distribution amplitudes
(LCDA’s) employing lattice QCD relies on the calculation of Mellin moments. These moments
are related to matrix elements of local operators that arise from an operator product expansion
(OPE). Because O(4) Euclidean space-time symmetry is broken by the lattice geometry, these local
operators mix under renormalisation, resulting in power divergences that are difficult to subtract
accurately [1, 2]. This is the reason why lattice-QCD determination of the PDF’s and the LCDA’s
using the above strategy has only been giving results for the first three Mellin moments.

Alternative methods for gaining parton-physics information with lattice QCD have been sug-
gested over the past two decades [3, 4, 5, 6, 7, 8, 9, 10, 11]. These methods involve calculating
hadronic matrix elements of non-local operators, and many of them are presently under intensive
investigation [12]. In this article, we present progress of performing a lattice calculation for the
pion LCDA, employing the proposal of introducing a valence relativistic heavy quark, as detailed
for the quark PDF’s in Ref. [5]. The pion LCDA, fp(x ), is of importance in understanding hadronic
exclusive decay processes in QCD [13], as well as in extracting information in flavour physics [14].
It is defined as

h0|d̄(�z)gµg5W [�z,z]u(z)|p+(p)i= ipµ fp

Z 1

�1
dx e�ix p·zfp(x ), (1.1)

with z2 = 0, and W [�z,z] being a light-like Wilson line between �z and z. The variable x rep-
resents the fraction of the pion momentum carried by the valence u quark. The above DA can be
constructed from its Mellin moments, an, that are related to local matrix elements in QCD,

an =
Z 1

0
dx x n fp(x ) ,

fp an�1 [pµ1 . . . pµn �Traces] =�ih0|d̄g{µ1g5(iDµ2) . . .(iDµn})u�Traces|p+(p)i, (1.2)

with the Lorentz indices symmetrised. From early [2] to recent [15, 16, 17, 18] lattice calcu-
lations following the traditional approach, only the second moment of this LCDA has been ex-
tracted because of the above issue of power divergence in the operator mixing. Using the strate-
gies in Refs. [6, 8], exploratory results for the x�dependence of fp(x ) have recently been re-
ported [19, 20].

2. Operator product expansion and the valence heavy quark

Using the method of Ref. [5], it can be shown that the Euclidean hadronic tensor,

U [µn ]
A (q, p) =

Z
d4x eiqx h0|T [A[µ

Y,y(x) An ]
Y,y(0)]|p

+(p)i, (2.1)

in the continuum limit enables one to extract the moments, an, defined in Eq. (1.2) without having
to subtract any power divergence. In Eq. (2.1), the Lorentz indices, µ and n , are antisymmetrised,

1

Pion distribution amplitude and lattice OPE Santanu Mondal

and the axial current is defined as

Aµ
Y,y = Ygµg5y +ygµg5Y, (2.2)

with y being a light-quark and Y being the valence heavy-quark fields. We stress that the ap-
proach outlined in Ref. [5] requires the extrapolation of lattice results for U [µn ]

A (q, p) to the contin-
uum limit. Furthermore, the hadronic tensor, U [µn ]

A (q, p), should be computed in the “unphysical”
regime

(pM +qM)2 < (mY +LQCD)
2, (2.3)

where qM and pM are the Minkowskian counterparts of q and p. In this regime the analytic contin-
uation of U [µn ]

A (q, p) to Minkowski space is straightforward. It can be achieved by simply relating
q4 to iq0. The above considerations lead to the requirement for the hierarchy of scales

LQCD ⌧
p

q2 / mY ⌧ 1
a
, (2.4)

where a is the lattice spacing.
Performing an OPE by following the procedure in Ref. [5], one obtains

U [µn ]
A (p,q) = 2i fpeµnrl qr pl ⇥

•

Â
n=0,2,4···


z nC2

n(h)

(n+1)Q̃2

�
C

(n)
W

�
mY, Q̃,µ

�
an(µ), (2.5)

where z =
p

p2q2/Q̃2, h = p.q/
p

p2q2, Q̃2 = �q2 �m2
Y, the C

(n)
W (mY, Q̃,µ) are the Wilson co-

efficients, µ is the renormalisation scale, and the C2
n(h) are the Gegenbauer polynomials that arise

from resumming the target-mass effects. Notice that there is an ambiguity of O(LQCD) in the defi-
nition of Q̃. Detailed discussion of this ambiguity and the higher-twist contributions can be found
in Ref. [5]. Also, Eq. (2.5) indicates that the hadronic tensor, U [µn ]

A (p,q), is purely imaginary in
Euclidean space.

3. Correlators and simulation details

We consider the following correlators involving the pion interpolating operator, Op , and the
current in Eq. (2.2),

Cµn
3 (te,ts;~pe,~ps) =

Z
d3xed3xsei~pe·~xe+i~ps·~xs

D
0
���T

h
Aµ

Y,y (~xe,te)An
Y,y (~xm,ts)O

†
p(0)

i���0
E
,

Cp (tp ;~p) =
Z

d3x ei~p·~x ⌦0
��Op(~x,tp)O

†
p(0)

��0
↵
, (3.1)

where the subscripts, e and s, in the three-point function stand for “extended” and “sink” points in
the computation of the quark propagators. It is straightforward to demonstrate that using Cµn

3 and
Cp in the limit where tp,e,s are all large, one can extract the quantity, Rµn

3 , that is defined as

Rµn
3 (t,~q,~p)⌘

Z
d3x ei~q.~x h0|T [Aµ

Y,y(~x,t) An
Y,y(~0,0)]|p(p)i. (3.2)

Thus the hadronic tensor in Eq. (2.1) can be obtained by performing the Fourier transform of
R[µn ]

3 (t,~q,~p) in the temporal direction,

U [µn ]
A (q, p) =

Z tmax

tmin

dt eiq4t R[µn ]
3 (t,~q,~p), (3.3)

2

• Detmold and Lin, PRD73 (2006)
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Figure 2: Time-direction Fourier transform for obtaining bare Im[U [12]
A (q, p)] with ~q = (0,0,2p/L) and

~p = (0,0,0) and two choices q4, at mY = 1.3 GeV (left) and 2 GeV (right).
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Figure 3: Imaginary part of U [12]
A (q, p) for ~q = (0,0,2p/L), ~p = (0,0,0) and mY = 1.3 GeV, at a = 0.05,

0.06, 0.075 fm (a�1 = 4.0, 3.33, 2.67 GeV, respectively), with 3 choices of q4. One-loop ZA is used.

3. Notice that we also include the exploratory results from the a = 0.06 fm lattice in Fig. 3. As
stressed earlier in this article, our strategy requires reliable extrapolation of the hadronic tensor to
the continuum limit.

We have also examined R[12]
3 (t,~q,~p) and U [12]

A (p,q) at non-vanishing pion momentum. In this
case, the lattice data are expected to be noisy. To address this, we have investigated the technique
of momentum smearing [25] for the pion interpolating operator, Op . Results of the study for two
choices of the pion momentum, ~p = (0,0,2p/L) and ~p = (0,2p/L,2p/L), at the current-injected
momentum ~q = (0,0,2p/L) are presented in Figs. 4 and 5. Plots in these figures show that mo-
mentum smearing is advantageous already for these low values of |~p|, although its implementation
requires separate computations for the light quark and anti-quark propagators. We will make use
of this technique in our future work on the pion LCDA.
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~p = (0,0,0) and two choices q4, at mY = 1.3 GeV (left) and 2 GeV (right).
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Figure 3: Imaginary part of U [12]
A (q, p) for ~q = (0,0,2p/L), ~p = (0,0,0) and mY = 1.3 GeV, at a = 0.05,

0.06, 0.075 fm (a�1 = 4.0, 3.33, 2.67 GeV, respectively), with 3 choices of q4. One-loop ZA is used.

3. Notice that we also include the exploratory results from the a = 0.06 fm lattice in Fig. 3. As
stressed earlier in this article, our strategy requires reliable extrapolation of the hadronic tensor to
the continuum limit.

We have also examined R[12]
3 (t,~q,~p) and U [12]

A (p,q) at non-vanishing pion momentum. In this
case, the lattice data are expected to be noisy. To address this, we have investigated the technique
of momentum smearing [25] for the pion interpolating operator, Op . Results of the study for two
choices of the pion momentum, ~p = (0,0,2p/L) and ~p = (0,2p/L,2p/L), at the current-injected
momentum ~q = (0,0,2p/L) are presented in Figs. 4 and 5. Plots in these figures show that mo-
mentum smearing is advantageous already for these low values of |~p|, although its implementation
requires separate computations for the light quark and anti-quark propagators. We will make use
of this technique in our future work on the pion LCDA.
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4

and have it evaluated in the pion state |⇡ (p)i, where Jk

is a local quark bilinear and ⇠4 is included to maintain
an overall dimensionless matrix element. By examining
the path-integral definition of an arbitrary operator de-
fined at a single Euclidean time removes complications
in analytically continuing our results back to Minkowski
space. In this case, the general time-ordering of O

µ⌫
ij (⇠)

is instead expressed as a sum of diagrams with momenta
flowing in/out of the fixed current locations. We define
the matrix element of O

µ⌫
ij (⇠) in the pion as

�µ⌫
ij (⇠, p)= h⇡ (p)| Oµ⌫

ij (⇠) |⇡ (p)i

= ⇠4 h⇡ (p)| J µ
i (⇠/2) J

⌫
j (�⇠/2) |⇡ (p)i (10)

Projecting onto an asymptotic quark state, we are left
with two distinct diagrams at leading order (LO):

k = xp k = xp

�⇠/2 ⇠/2

⌫ µ
l

(a)

k = xp k = xp

�⇠/2 ⇠/2

⌫ µ
l

(b)

FIG. 1. The lowest order Feynman diagrams contributing
to the �µ⌫

ij in Eq.(10) on an asymptotic on-shell quark state
of momentum k.

Depending on the current-current combinations con-
sidered, the resulting Lorentz decomposition of �µ⌫

ij (⇠, p)
will introduce numerous scalar form factors consistent
with parity and time-reversal invariance. It is these form
factors that will provide information on a wide array
of distribution functions, when factorized according to
Eq. (6). A general expression from which the LO pertur-
bative kernels can be obtained follows from application of
perturbative formulae to the diagrams above. Averaging
over quark spin, the ordering depicted in Fig. (1a) yields

M
(a)
ij =

⇠4

2

X

s

h0| us (k) eik·⇠/2�µ
i  (⇠/2)

⇥  (�⇠/2) �⌫
j e

ik·⇠/2us (k) |0i

=
⇠4

2

X

s

eik·⇠us (k) �µ
i h0| (⇠/2) (�⇠/2) |0i�⌫

ju
s (k)

=
⇠4

2
eik·⇠ Tr

"
(� · k) �µ

i

Z
d4l

(2⇡)4
i� · l

l2 + i✏
e�il·⇠ �⌫

j

#
(11)

where an inverse Fourier transform has been used to ex-
press the quark propagator from �⇠/2 ! ⇠/2 in coor-
dinate space. The second ordering, shown in Fig. (1b),
similarly yields

M
(b)
ji =

⇠4

2
e�ik·⇠ Tr

"
(� · k) �⌫

j

Z
d4l

(2⇡)4
�i� · l

l2 + i✏
e�il·⇠ �µ

i

#

(12)

Combining Eqs. (11) and (12) and writing the quark
momentum as kµ = xpµ, we obtain a general relation in
the LO denoted by the superscript (0) as

�µ⌫(0)
ij (p · ⇠, p; x, ⇠) =

i

4⇡2
xp↵⇠�

�
eixp·⇠ Tr

⇥
�↵�µ

i �
��⌫

j

⇤

�e�ixp·⇠ Tr
⇥
�↵�⌫

j �
��µ

i

⇤ 
(13)

from which the kernels Kq(0)
n

�
!, ⇠2; x

�
with ! = p · ⇠ can

be isolated for currents {i, j}.
Given invariance of the strong interaction under par-

ity (P) and time-reversal (T ) transformations, the pion
matrix element �µ⌫

ij (⇠, p) has the following property,

�µ⌫
ij (⇠, p) = h⇡ (p)| (PT )

�
O

µ⌫
ij (⇠)

�†
(PT )�1

|⇡ (p)i .
(14)

In this work, we consider the case of a vector J
µ
V =

 �µ and axial-vector J
⌫
A =  �⌫�5 current combina-

tion, whose transformation properties are

(PT ) J
µ
A (⇠) (PT )�1 = �J

µ
A (�⇠)

(PT ) J
µ
V (⇠) (PT )�1 = J

µ
V (�⇠)

With these transformation properties, we find that the
following combination of these two currents, �µ⌫

V A (⇠, p)+
�µ⌫
AV (⇠, p) ⌘ h⇡ (p)| [Oµ⌫

V A (⇠) + O
µ⌫
AV (⇠)] |⇡ (p)i, is anti-

symmetric in Lorentz indices, {µ, ⌫}, and can be ex-
pressed in terms of two dimensionless scalar form factors
as

1

2
[�µ⌫

V A (⇠, p) + �µ⌫
AV (⇠, p)]

⌘ ✏µ⌫↵�⇠↵p�T1

�
!, ⇠2

�
+ (pµ⇠⌫ � ⇠µp⌫) T2

�
!, ⇠2

�

(15)

where Ti

�
!, ⇠2

�
are the dimensionless functions of the

Lorentz invariants {!, ⇠2}.
The dimensionless functions are isolated by taking ap-

propriate tensor contractions of the antisymmetric ma-
trix element in Eq. (15),

T1

�
!, ⇠2

�
=

1

2 (!2 � p2⇠2)
(16)

⇥
�
✏µ⌫↵�⇠

↵p�
�1

2
[�µ⌫

V A (⇠, p) + �µ⌫
AV (⇠, p)] ,

T2

�
!, ⇠2

�
=

1

2 (!2 � p2⇠2)
(17)

⇥ (⇠µp⌫ � pµ⇠⌫)
1

2
[�µ⌫

V A(⇠, p)+�µ⌫
AV (⇠, p)] .

A judicious choice of ⇠, p, and Lorentz indices {µ, ⌫},
exposes the structure functions T1

�
!, ⇠2

�
and T2

�
!, ⇠2

�

without recourse to a full tensor contraction as in
Eqs. (16) and (17). To isolate the structure functions
we stipulate p = (p0, 0, 0, p3) and ⇠ = (0, 0, 0, ⇠3). T1 is
then isolated by choosing µ = 1 and ⌫ = 2:

T1

�
!, ⇠2

�
=

1

p0⇠3
1

2

⇥
�12
V A (⇠, p) + �12

AV (⇠, p)
⇤

. (18)
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and have it evaluated in the pion state |⇡ (p)i, where Jk

is a local quark bilinear and ⇠4 is included to maintain
an overall dimensionless matrix element. By examining
the path-integral definition of an arbitrary operator de-
fined at a single Euclidean time removes complications
in analytically continuing our results back to Minkowski
space. In this case, the general time-ordering of O

µ⌫
ij (⇠)

is instead expressed as a sum of diagrams with momenta
flowing in/out of the fixed current locations. We define
the matrix element of O

µ⌫
ij (⇠) in the pion as

�µ⌫
ij (⇠, p)= h⇡ (p)| Oµ⌫

ij (⇠) |⇡ (p)i

= ⇠4 h⇡ (p)| J µ
i (⇠/2) J

⌫
j (�⇠/2) |⇡ (p)i (10)

Projecting onto an asymptotic quark state, we are left
with two distinct diagrams at leading order (LO):

k = xp k = xp

�⇠/2 ⇠/2

⌫ µ
l

(a)

k = xp k = xp

�⇠/2 ⇠/2

⌫ µ
l

(b)

FIG. 1. The lowest order Feynman diagrams contributing
to the �µ⌫

ij in Eq.(10) on an asymptotic on-shell quark state
of momentum k.

Depending on the current-current combinations con-
sidered, the resulting Lorentz decomposition of �µ⌫

ij (⇠, p)
will introduce numerous scalar form factors consistent
with parity and time-reversal invariance. It is these form
factors that will provide information on a wide array
of distribution functions, when factorized according to
Eq. (6). A general expression from which the LO pertur-
bative kernels can be obtained follows from application of
perturbative formulae to the diagrams above. Averaging
over quark spin, the ordering depicted in Fig. (1a) yields

M
(a)
ij =

⇠4

2

X

s

h0| us (k) eik·⇠/2�µ
i  (⇠/2)

⇥  (�⇠/2) �⌫
j e

ik·⇠/2us (k) |0i

=
⇠4

2

X

s

eik·⇠us (k) �µ
i h0| (⇠/2) (�⇠/2) |0i�⌫

ju
s (k)

=
⇠4

2
eik·⇠ Tr

"
(� · k) �µ

i

Z
d4l

(2⇡)4
i� · l

l2 + i✏
e�il·⇠ �⌫

j

#
(11)

where an inverse Fourier transform has been used to ex-
press the quark propagator from �⇠/2 ! ⇠/2 in coor-
dinate space. The second ordering, shown in Fig. (1b),
similarly yields

M
(b)
ji =

⇠4

2
e�ik·⇠ Tr

"
(� · k) �⌫

j

Z
d4l

(2⇡)4
�i� · l

l2 + i✏
e�il·⇠ �µ

i

#

(12)

Combining Eqs. (11) and (12) and writing the quark
momentum as kµ = xpµ, we obtain a general relation in
the LO denoted by the superscript (0) as

�µ⌫(0)
ij (p · ⇠, p; x, ⇠) =

i

4⇡2
xp↵⇠�

�
eixp·⇠ Tr

⇥
�↵�µ

i �
��⌫

j

⇤

�e�ixp·⇠ Tr
⇥
�↵�⌫

j �
��µ

i

⇤ 
(13)

from which the kernels Kq(0)
n

�
!, ⇠2; x

�
with ! = p · ⇠ can

be isolated for currents {i, j}.
Given invariance of the strong interaction under par-

ity (P) and time-reversal (T ) transformations, the pion
matrix element �µ⌫

ij (⇠, p) has the following property,

�µ⌫
ij (⇠, p) = h⇡ (p)| (PT )

�
O

µ⌫
ij (⇠)

�†
(PT )�1

|⇡ (p)i .
(14)

In this work, we consider the case of a vector J
µ
V =

 �µ and axial-vector J
⌫
A =  �⌫�5 current combina-

tion, whose transformation properties are

(PT ) J
µ
A (⇠) (PT )�1 = �J

µ
A (�⇠)

(PT ) J
µ
V (⇠) (PT )�1 = J

µ
V (�⇠)

With these transformation properties, we find that the
following combination of these two currents, �µ⌫

V A (⇠, p)+
�µ⌫
AV (⇠, p) ⌘ h⇡ (p)| [Oµ⌫

V A (⇠) + O
µ⌫
AV (⇠)] |⇡ (p)i, is anti-

symmetric in Lorentz indices, {µ, ⌫}, and can be ex-
pressed in terms of two dimensionless scalar form factors
as

1

2
[�µ⌫

V A (⇠, p) + �µ⌫
AV (⇠, p)]

⌘ ✏µ⌫↵�⇠↵p�T1

�
!, ⇠2

�
+ (pµ⇠⌫ � ⇠µp⌫) T2

�
!, ⇠2

�
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where Ti

�
!, ⇠2

�
are the dimensionless functions of the

Lorentz invariants {!, ⇠2}.
The dimensionless functions are isolated by taking ap-

propriate tensor contractions of the antisymmetric ma-
trix element in Eq. (15),

T1

�
!, ⇠2

�
=

1

2 (!2 � p2⇠2)
(16)

⇥
�
✏µ⌫↵�⇠

↵p�
�1

2
[�µ⌫

V A (⇠, p) + �µ⌫
AV (⇠, p)] ,

T2

�
!, ⇠2

�
=

1

2 (!2 � p2⇠2)
(17)

⇥ (⇠µp⌫ � pµ⇠⌫)
1

2
[�µ⌫

V A(⇠, p)+�µ⌫
AV (⇠, p)] .

A judicious choice of ⇠, p, and Lorentz indices {µ, ⌫},
exposes the structure functions T1

�
!, ⇠2

�
and T2

�
!, ⇠2

�

without recourse to a full tensor contraction as in
Eqs. (16) and (17). To isolate the structure functions
we stipulate p = (p0, 0, 0, p3) and ⇠ = (0, 0, 0, ⇠3). T1 is
then isolated by choosing µ = 1 and ⌫ = 2:

T1

�
!, ⇠2

�
=

1

p0⇠3
1

2

⇥
�12
V A (⇠, p) + �12

AV (⇠, p)
⇤
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While T2 is isolated by choosing µ = 0 and ⌫ = 3:

T2

�
!, ⇠2

�
=

1

p0⇠3

1

2

⇥
�03
V A(⇠, p)+�03

AV (⇠, p)
⇤

. (19)

From Eq. (6), the Ti

�
!, ⇠2

�
can be thus factorized as

Ti

�
!, ⇠2

�
=

X

a=q,q,g

Z 1

0

dx

x
fa
�
x, µ2

�
Ca

i

�
x!, ⇠2, µ2

�

+O
�
⇠2⇤2

QCD

�
. (20)

with the perturbatively calculable matching coe�cients
Ca

i

�
x!, ⇠2, µ2

�
for parton flavor a.

Similar to the derivation of Eq. (13), the LO contribu-
tion to the antisymmetric pion matrix element in Eq. (15)
is given by

�µ⌫(0)
V A (p · ⇠, p; x, ⇠) =

i

4⇡2
xp↵⇠�

⇥
Tr
�
�↵�µ���⌫�5

�
eixp·⇠

�Tr
�
�↵�⌫�5���µ

�
e�ixp·⇠⇤

= �
i

⇡2
xp↵⇠�

�
i✏↵µ�⌫eix! � i✏↵⌫�µe�ix!

�

=
1

⇡2
x✏µ⌫↵�⇠↵p�

�
eix! + e�ix!

�
(21)

with Tr
�
�µ�⌫�⇢���5

�
= �4i✏µ⌫⇢� dictated by the con-

vention ✏0123 = 1. Substituting Eq. (21) into Eqs. (16)
and (17), we obtain the two scalar form factors of a quark
state of momentum k = xp at the LO, respectively,

T q(0)
1 (x!, ⇠2) =

x

⇡2

�
eix! + e�ix!

�
, (22)

T q(0)
2 (x!, ⇠2) = 0 . (23)

With fq(0)
a

�
x, µ2

�
= � (1 � x) �qa, we obtain the lowest

order perturbative coe�cients in Eq. (20) as,

Cq(0)
1 (x!, ⇠2) = T q(0)

1 (x!, ⇠2) =
2x

⇡2
cos(x!) (24)

Cq(0)
2 (x!, ⇠2) = 0 , (25)

respectively.
We have the LO momentum-space scalar form factors

by performing a Fourier transformation in !,

T̃1

�
x̃, ⇠2

�
⌘

Z
d!

2⇡
e�ix̃! T1

�
!, ⇠2

�

⇡

Z
d!

2⇡
e�ix̃!

Z 1

0

dx

x
q (x) Cq(0)

1 (x!, ⇠2, µ2)

⇡

Z
d!

2⇡
e�ix̃!

Z 1

0

dx

x
q (x)

x

⇡2

�
eix! + e�ix!

�

⇡
1

⇡2

�
q (x̃) + q (�x̃)

 

⇡
1

⇡2

�
q (x̃) � q (x̃)

 
=

1

⇡2
qv(x̃) , (26)

where q(�x̃) = �q(x̃) is used, qv(x̃) ⌘ [q (x̃) � q (x̃)] is
the valence quark distribution, and the ⇠2 or the fac-
torization scale dependence is suppressed since we are

working at the LO approximation. Equation (26) implies
that T̃1(x̃, ⇠2) is proportional to the valence quark PDF
with momentum fraction x̃, which is actually true to all
orders due to the symmetry of the coe�cient function
Cq

1(x!, ⇠2, µ2) = �Cq
1(�x!, ⇠2, µ2).

Therefore direct information on the pion’s valence
quark distribution qv

�
x̃, µ2

�
is accessible by evaluating

the antisymmetric combination of vector and axial-vector
(V-A) current-current correlators, up to an overall factor
of 1/⇡2 and corrections in powers of ↵s and/or ⇠2⇤2

QCD.
It has been shown in Ref. [28] that the validity of op-

erator product expansion (OPE) guarantees that T1 is
an analytic function of !, as is its Taylor series around
! = 0. By keeping ⇠ to be short distance and increasing
! by increasing p, there exists no way for new divergences
to appear in T1. Therefore, T1 remains an analytic func-
tion of ! unless ! = 1 and the factorization holds for
any values of ! and ⇠2 as long as ⇠ is short distance, sim-
ilar to the scenario of the factorization of experimental
cross sections.

V. NUMERICAL METHODS

This calculation is performed on a lattice gauge ensem-
ble of 490 configurations generated by the JLab/W&M
Collaboration [54]. This ensemble employs 2+1 flavors
of clover Wilson fermions and a tree-level tadpole im-
proved Symanzik gauge action. The strange quark mass
was set by requiring the ratio

�
2M2

K+ � M2
⇡+

�
/M⌦� to

assume its physical value. The configurations were gen-
erated using a rational Hybrid Monte Carlo update algo-
rithm [55]. The fermion action includes a single iteration
of stout smearing with weight ⇢ = 0.125. This smearing
makes the employed tadpole corrected tree-level clover
coe�cient, csw, very close to the nonperturbative value
determined, a posteriori, by the Schrödinger functional
method.

The extraction of hadron-to-hadron matrix elements
in lattice QCD requires the calculation of correlation
functions. The 2-point function is a vacuum expectation
value of two interpolating fields separated in Euclidean
time T :

C2pt(p, T ) = h⇧p(T )⇧p(0)i, (27)

where the interpolating field ⇧p is an operator with quan-
tum numbers of a pion with momentum p. A spectral
decomposition of the 2-point function is given by the fol-
lowing tower of exponentials

C2pt(p, T ) =
X

n

|Zn|
2

2En(p)
e�En(p)T , (28)

where the sum is over all energy eigenstates n with quan-
tum numbers of the pion, Zn = h0|⇧p|ni is the overlap
factor between the operator and the nth excited state and
En(p) is the energy of that state with momentum p. In
the large Euclidean time limit, this correlation function
will be dominated by the ground state.

6

A good choice of interpolating field will have a large
overlap factor with the ground state while simultane-
ously having poor overlap with excited states. For low-
momenta or states at rest, spatial smearing is a well-
established method to reduce the overlap of pointlike in-
terpolators onto high energy eigenstates. We employ in
this work the Jacobi-smearing procedure [56], in which
pointlike quark fields are smeared according to

q̂ (~x, t) =

✓
1 +

�r
2

n�

◆n�

q (~x, t) (29)

where r
2 is the three dimensional gauge-covariant dis-

cretization of the Laplacian, � the smearing “width” and
n� the number of applications of the smearing kernel
onto the pointlike quark fields. For highly-boosted states,
however, the overlap of even spatially-smeared interpo-
lators can become suboptimal. To ameliorate the e↵ects
of excited-states and improve the overlap of our interpo-
lators onto boosted pions, we implement a combination
of the Jacobi and momentum-smearing [57] techniques.
In practice we apply appropriately constructed phases to
the underlying gauge fields prior to source creation ac-
cording to

Ũµ [x] = ei
2⇡
L ⇣dµUµ [x] (30)

where ~d is the direction in which phases are applied, with
magnitude ⇣ tuned for each desired momenta. The final
interpolating fields are given by

⇧~p(t) =
X

~x

ei~p·~x ¯̃q(~x, t)�5q̃(~x, t) (31)

where q̃ is a light quark field constructed with the com-
bined application of momentum smearing and Jacobi
smearing. The smearing parameters used were varied
for each momentum and are shown in Table I. Due to
the decreasing signal to noise ratio, the higher momen-
tum states required more source points and shorter time
separation between the pion operators. These values are
also shown in Table I.

~p = [0, 0, pz] ⇣ No. of source points
(x0, t)

No. of source-sink
separations

p = 0.610 GeV 1.75 2 9

p = 0.915 GeV 2.50 5 9

p = 1.220 GeV 3.75 6 9

p = 1.525 GeV 4.50 7 7

TABLE I. The lattice momenta ~p = [0, 0, pz] of our interpolat-
ing operators and the momentum-smearing phases ⇣ applied
for each lattice momenta in the direction ~d = [0, 0, 1], as well
as number of pion source points and source-sink separations.
Quark sources comprising our interpolators were subsequently
spatially smeared according to the Jacobi-smearing procedure
with smearing parameters � = 4.0 and n� = 50.

For the calculation of any good LCS, the composite
operators used have finite spatial extent ⇠. Introduction
of a heavy auxiliary quark field Q (mQ > ml), such that

our operators are of the form O(t) = J
†
�(⇠, t)J�0(0, t)

with J� = q̄�Q, limits the available phase space be-
tween the two currents thereby reducing the statistical
noise. An auxiliary heavy quark has also been used in
Ref. [58] to remove higher twist contamination in the
calculation of moments of the PDF and the distribution
amplitude (DA). For our calculation of the pion valence
distribution, multiple auxiliary quark masses between
the light and strange quark mass were tested. A slight
improvement in the signal-to-noise ratio from the heavier
masses was observed for the larger momenta. We set
the auxiliary quark propagator to the strange quark
mass for the remainder of this calculation. In addition,
to minimize excited state contamination, the operator
insertion time (t) will be fixed to be midway between
the source and sink interpolators (i.e. t = T

2 ).

The 4-point correlation function is constructed using
a modified sequential source technique. Because we are
not performing a time slice momentum projection at the
operator, the standard sequential source method using
the operator as sequential source does not work here.
However, for the case of meson there is a straightforward
implementation where momentum projections are per-
formed at source and sink meson operators and the cor-
responding correlation functions are computed as chain
of sequential sources as described below. The correlation
function is expressed as follows

C4pt (⇠, p, T, t)

= h⇧p(~z, T )J †
�(x0 + ⇠, t)J�0(x0, t)⇧p (~y, 0)i

=
X

~z,~y

e�i(~z�~y)·~p
h
¯̃d�5ũ (~z, T ) Q̄�u(x0 + ⇠, t)

⇥ ū�0Q(x0, t) ¯̃u�5d̃ (~y, 0)i

= Tr
⇥
Ipq (x0 + ⇠, t; x0, t)��5GQ(x0 + ⇠, t; x0, t)

†�5�0⇤

(32)

where (x0, t) is a randomly determined source point,
GQ(y0; x0) is the flavor Q auxiliary quark propagator from
x0 to y0, and Ipq (y0; x0) is the modified sequential source
with flavor q-quarks and pions at momentum p. The
modified sequential source is constructed through sequen-
tial inversions of the light quark Dirac operator, reusing
already calculated propagators. Heuristically, the mod-
ified sequential source is constructed by calculating the
light quark propagator from a point-source located at
one of the currents to the source interpolator, using this
object as a source for a subsequent propagator to the
sink interpolator, and lastly using this larger object as a
source for propagation from the sink to the second cur-
rent. This construction is done by solving the following
sequence of systems of equations for Gq, Hp

q , and Ipq .

1
X

x0,s0

Dq(x, s; x0, s0)Gq(x
0, s0; x0, t) = �(x � x0)�(s � t)

9

FIG. 5. Fit to the antisymmetric V-A currents matrix ele-
ment with leading order (LO) perturbative kernel in Eq. (35)
and functional form of pion valence distribution in Eq. (38).

symmetry breaking e↵ects as observed in [36].

The extraction of the PDF using Eq. (35) from lattice
calculated data constitutes an ill-posed inverse problem.
Lattice data will always be discretized and in a limited
range of !. As demonstrated in [59], a näıve discretized
inverse cosine transform would introduce numerical arti-
facts into the PDF. Solutions to this inverse problem re-
quire additional information or constraints. In the global
fitting community, additional information is given in the
form of smooth physically motivated functional forms as
described below. PDFs extracted using this technique
have been successfully shown to describe di↵erent phys-
ical processes, thereby assuring the universality of the
nonperturbative PDFs. Of importance, it is known that
the valence distributions of nucleon and pion are smooth
functions of x in the region 0 < x < 1. In the spirit of the
functional forms used in global fits of PDFs, we insert

q⇡v (x) = Nx↵(1 � x)�(1 + ⇢
p

x + �x) (36)

into Eq. (35) and numerically perform the integration,
where N is the normalization such that

Z 1

0
dx q⇡v (x) = 1. (37)

With the limitations related to ⇠2 corrections in mind,
in this preliminary calculation, we use the numerical fit-
ting program ROOT [60] to fit bootstrap samples of the
V-A matrix elements and obtain a LO q⇡v (x)-distribution.
The uncertainty band in the fit has been obtained from
the fit results of the bootstrap samples. With the various
sources of ⇠2 corrections not taken into account, we did
not expect the matrix elements as a function of Io↵e time
to fall upon a single curve - consequently the �2/d.o.f.
was close to 2.2.

We find that the term ⇢
p

x in Eq. (36) has no e↵ect
in the fit, as ⇢ ' 0. A similar zero-value for ⇢ was also

found in Ref. [26] and other global fits to experimental
data. We therefore adopt a simpler functional form for
the PDF in our calculation

q⇡v (x) =
x↵(1 � x)�(1 + �x)

B(↵ + 1, � + 1) + �B(↵ + 1 + 1, � + 1)
,(38)

where the beta functions in the denominator ensure the
normalization condition in Eq. (37) is met. In Eq. (38),
the (1 � x)� allows a smooth interpolation to zero as
x ! 1 and is inspired by the counting rule of perturba-
tive QCD. The x↵ term is motivated by the behavior pre-
dicted by Regge theory at small x. One could interpolate
these two limits using a polynomial of x. However, due to
present statistics and small range of ⇠, we cannot quanti-
tatively distinguish between di↵erent choices of polyno-
mials. Therefore, we use the widely adopted phenomeno-
logically motivated functional form of pion valence PDF
in Eq. (36). We set the following physically motivated
and relaxed constraints

↵ < 0, 0 < � < 4. (39)

The fit to the lattice QCD data using the LO kernel in
Eq. (35) and the functional form of PDF in Eq. (38) is
shown in Fig. 5 with the fit parameters,

↵ = �0.34(31)

� = 1.93(68)

� = 3.05(2.50) (40)

The extracted PDF from this fit is shown in Fig. (6a)
where the values of the fit parameters are indicated. We
also show the xq⇡v (x)-distribution in Fig. (6b). The per-
turbative kernel fixes the value of the integral in Eq. (35)
to be 1

⇡2 at ! = 0 for any value of x, therefore the fitted
value of T1

�
!, ⇠2

�
has zero uncertainty at this point.

VII. COMPARISON WITH OTHER
DETERMINATIONS

This first exploratory lattice QCD calculation of the
pion PDF using spatially-separated current-current cor-
relation function is performed at a relatively heavy pion
mass (m⇡ ' 416 MeV). This calculation must be re-
peated on several other lattice ensembles to determine
the pion mass dependence, quantify lattice artifacts such
as finite lattice spacing and finite volume [61] corrections
and obtain the PDF in the continuum limit. As men-
tioned earlier, extending the perturbative calculation be-
yond LO will not only lead to a more reliable extraction of
the PDF, but also an understanding of power corrections
and higher twist e↵ects. A NLO matching kernel will
give control over the corrections in ⇠, both from DGLAP
and higher twist e↵ects. This calculation was performed
on a fairly coarse lattice with a large minimum ⇠, and
in the future these corrections will need to be taken into
account. While such calculations are underway and will
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(a)

(b)

FIG. 6. The pion valence distribution obtained from the fit in
Eq. (35) using the LO perturbative kernel in Eq. (24) derived
in Sec. IV and the functional form of the PDF in Eq. (38).
Figure (6a) shows the pion valence distribution q⇡v (x) and
Figure (6b) shows the xq⇡v (x)-distribution. The uncertainty
band is obtained from the fits to the Jackknife samples of the
data.

be presented in a future work, the limitations in our cur-
rent extraction of the pion valence PDF do not preclude
comparison with global fits, two di↵erent model calcula-
tions and recent lattice calculations of pion valence quasi-
distribution.

For a comparison with the LO extraction of q⇡v (x) from
Drell-Yan experimental data in Ref. [10], we evolve our
lattice QCD determination of the PDF in LO to an evo-
lution scale of µ2 = 27 GeV2 starting from initial scale
of µ2

0 = 1 GeV2. With only a LO matching kernel, the
initial scale µ0 is chosen to be comparable to the 1

⇠ ’s
used in this calculation, but not low enough for pertur-
bation theory to be doubted. With a NLO matching ker-
nel, there will exist an explicit relationship between the
scales ⇠ and µ0 from the logarithmic terms. After the

evolution, a shift in the peak of the xq⇡v (x)-distribution
toward smaller values of x and a more convex-up behav-
ior of the distribution near x = 1 is seen as expected
in our calculation. From the fit parameters in Eq. (38)
(↵ = �0.34(31), � = 1.93(68), and � = 3.05(2.50) at
the initial scale), it is seen that this lattice QCD calcula-
tion of q⇡v (x) is in agreement within uncertainty with the
analysis in Ref. [16], where the authors included next-
to-leading-logarithmic threshold soft-gluon resummation
e↵ects in the calculation of the Drell-Yan cross section.
The large-x behavior is statistically consistent with the
expectation based on perturbative QCD [18–20] but of
course with large uncertainty. In contrast, the large-x
behavior of this calculation has about ⇠ 1� di↵erence
from the two other NLO fits [15, 17] which obtained a
harder (1 � x) fall-o↵ of the pion valence distribution.

FIG. 7. Comparison of pion xq⇡v (x)-distribution with the
leading-order (LO) extraction from Drell-Yan data [10] (gray
data points with uncertainties), next-to-leading order (NLO)
fits [15–17] (orange band, magenta curve, and red band), and
model calculations [24, 26] (black and blue lines). This lattice
QCD calculation of q⇡v (x) is evolved from an initial scale µ2

0 =
1 GeV2 at LO. All the results are at evolved to an evolution
scale of µ2 = 27 GeV2.

It is seen in Fig. (7) that the large-x behavior of this
calculation is statistically consistent with the Dyson-
Schwinger model prediction [26] labeled as “DSE” in
the momentum fraction region x > 0.7. On the other
hand, this lattice QCD calculation of q⇡v (x) is in sta-
tistical agreement with the light-front holographic QCD
model calculation labeled as “LFHQCD” in the region
x < 0.5, but shows a slightly softer fall-o↵ at large-x in
its central value. As mentioned earlier, in a future cal-
culation, when all the systematics of this lattice QCD
calculation are to be well understood and controlled in a
proper way, the first-principles determination of large-x
behavior of pion PDF such as this one can shed light for
understanding di↵erent approximations used in an array
of model calculations.

• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018); 
• Suffian et al., PRD99 (2019) 
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Lattice calculation of hadronic tensor of the nucleon
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Abstract. We report an attempt to calculate the deep inelastic scattering structure func-
tions from the hadronic tensor calculated on the lattice. We used the Backus-Gilbert
reconstruction method to address the inverse Laplace transformation for the analytic con-
tinuation from the Euclidean to the Minkowski space.

1 Hadronic tensor on the lattice

There has been a lot of interest and developments in calculating the structure functions and parton
distribution functions on the lattice in recent years [1]. The Euclidean hadronic tensor has been for-
mulated in the path-integral formalism [2–4]. The hadronic tensor in deep inelastic scattering, from
which the parton distribution functions are obtained through the factorization theorem, can be calcu-
lated from its Euclidean counterpart via an inverse Laplace transform [1, 2, 4]. It has been revealed
that, in addition to the valence partons, there are two types of sea partons – connected sea (CS) and
disconnected sea (DS) in three topologically distinct path-integral diagrams. The extended evolution
equations to accommodate both the connected and disconnected sea partons are derived [5]. It is es-
sential to have separately evolved CS and DS partons so that comparison with lattice calculations of
unpolarized and polarized moments of PDF can be made. Only with the extended evolution equations
will the CS and DS partons remain separated at di↵erent Q2 to facilitate global fitting of PDF with
separated CS and DS partons.

The definition of hadronic tensor in the Minkowski space is

Wµ⌫(q2, ⌫) =
1

4⇡

Z
d4zeiq·zhp|J†µ(z)J⌫(0)|pispin ave.

=
1
2

X

n

Z nY

i=1

"
d3 pi

(2⇡)32Epi

#
hN |Jµ(0)|nihn|J⌫(0)|Nispin ave.(2⇡)3�4(pn � p � q). (1)

where |pi is the nucleon state and Jµ is the vector current. In the Euclidean path integral formalism,
the hadronic tensor related nucleon matrix element can be expressed as the ratio of the four-point
function and the two-point function. To be specific, they are

C4(~p, ~q, ⌧) =
X

~x f

e�i~p·~x f
X

~x2~x1

e�i~q·(~x2�~x1)h�N(~x f , t f )Jµ(~x2, t2)J⌫(~x1, t1)�̄N(~0, t0)i, (2)

C2(~p, ⌧) =
X

~x f

e�i~p·~x f h�N(~x f , t f )�̄N(~0, t0)i, (3)
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where �N is the nucleon operator and ⌧ = t2 � t1. The ⌧ dependent Euclidean hadronic tensor is

W̃(~p, ~q, ⌧)
t f�t2,t1�t0
=

ENTr[�eC4(~p, ~q, ⌧)]
mNTr[�eC2(~p, ⌧)]

, (4)

where EN and mN are the energy and mass of the nucleon and �e =
1+�4

2 is the unpolarized spin
projector. After inserting the complete set of intermediate states, we have

W̃µ⌫(q2, ⌧) =
1

4⇡

X

n

 
2mN

2En

!
�~p+~q, ~pnhp|Jµ|nihn|J⌫|pispin ave.e�(En�EN )⌧. (5)

We see that in Eq. (5) there is an exponential dependence on the Euclidean ⌧. It will exponentially
decay when the lowest En is heavier than EN and it will exponentially grow when the lowest En is
lighter than EN . To analytic continue to the Minkowski space, an inverse Laplace transform is needed,
i.e.

Wµ⌫(q2, ⌫) =
1

2mNi

Z c+i1

c�i1
d⌧ e⌫⌧eWµ⌫(~q 2, ⌧), (6)

with c > 0. This is basically doing the anti-Wick rotation back to the Minkowski space to recover the
delta function in energy as shown in Eq. (1).

The topologically distinct insertions are shown in Figure 1. The first three involve leading-twist
contributions from the valence +CS partons in (a), the CS antipartons in (b), and the DS partons in (c).
The last two insertions ((d) and (e)) are higher-twist contributions which are suppressed by O(1/Q2)
and will be ignored.

We will focus on the first two insertions in this work. It has been pointed out that the second
insertion are the connected sea ū and d̄ contribution, which are responsible for the Gottfried sum rule
violation [2, 4].

(a) valence and connected sea parton
q(V+CS)

(b) connected sea anti-parton
q̄(CS)

(c) disconnected sea parton and
anti-parton q(DS) and q̄(DS)

(d) suppressed by O(1/Q2) (e) suppressed by O(1/Q2)

Figure 1. Topologically distinct diagrams in the Euclidean-path integral formulation.
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our preliminary lattice data in the next section. Moreover, we will also consider other inverse methods
such as the maximum entropy method and �2 fitting of model spectral function in the future to see
whether we can have consistent results. This will help to estimate the systematic error of the inverse
Laplace transform.

3 Preliminary results

Our exploratory calculation is carried out on a small 123⇥128 anisotropic clover lattice generated
by the CLQCD collaboration [10] with m⇡ ⇠ 640 MeV, as = 0.1785(53) fm and ⇠ = 5. The number
of configurations used is 500.

(a) ~p = 0 case. (b) ~p , 0 case.

Figure 3. Euclidean hadronic tensor W̃11(~p, ~q, ⌧) as a function of ⌧.

We choose the direction of the currents µ = ⌫ = 1, so what we calculate is the one-one component
of the Euclidean hadronic tensor W̃11(~p, ~q, ⌧). We use two sequential sources (one from t0 through t1
to t2 while the other from t0 through t f to t2) to calculate the four-point functions. Therefore, 3 times
of inversions are needed for each ~p, ~q, t1 and t f . The Chroma software [11] is used to implement our
calculation. The results of W̃11 are shown in Figure 3 as a function of the Euclidean time ⌧. The left
plot is the connected sea anti-parton case from Fig. 1 (b) with ~p = 0. We see that both curves of ū
and d̄ go down as ⌧ increases since the energy of the lowest intermediate state (i.e. nucleon energy
with a momentum of ~p + ~q) is larger than that of the nucleon at rest. The right one is the valence
plus connected sea case with ~p , 0 and ~q = �~p. Both curves go up as ⌧ increases since the lowest
intermediate state is the nucleon at rest whose energy is lower than that of the initial state with a
moving nucleon (i.e. mN < E~p.)

The Minkowski hadronic tensor W11(q2, ⌫), up to a constant, is just the spectral density !(⌫) in
the expression of the Backus-Gilbert method. After doing the Backus-Gilbert reconstruction using
the data in the ~p = 0 case, we get the Minkowski hadronic tensor W11 as shown in the left plot of
Figure 4.

The lowest peaks are the elastic peaks at ⌫ = E~p+~q � E~p as expected. The second peaks are related
to the quasi-elastic peaks of the �N reaction which are the excited nucleon states which includes
Roper state, S 11, ⇡N, etc. When the deep inelastic region sets in as in the experimental �p total cross
section ��p

tot in the right panel of Fig. 4, the density of the spectral function is expected to be smooth,
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such as the maximum entropy method and �2 fitting of model spectral function in the future to see
whether we can have consistent results. This will help to estimate the systematic error of the inverse
Laplace transform.
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Our exploratory calculation is carried out on a small 123⇥128 anisotropic clover lattice generated
by the CLQCD collaboration [10] with m⇡ ⇠ 640 MeV, as = 0.1785(53) fm and ⇠ = 5. The number
of configurations used is 500.
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Figure 3. Euclidean hadronic tensor W̃11(~p, ~q, ⌧) as a function of ⌧.

We choose the direction of the currents µ = ⌫ = 1, so what we calculate is the one-one component
of the Euclidean hadronic tensor W̃11(~p, ~q, ⌧). We use two sequential sources (one from t0 through t1
to t2 while the other from t0 through t f to t2) to calculate the four-point functions. Therefore, 3 times
of inversions are needed for each ~p, ~q, t1 and t f . The Chroma software [11] is used to implement our
calculation. The results of W̃11 are shown in Figure 3 as a function of the Euclidean time ⌧. The left
plot is the connected sea anti-parton case from Fig. 1 (b) with ~p = 0. We see that both curves of ū
and d̄ go down as ⌧ increases since the energy of the lowest intermediate state (i.e. nucleon energy
with a momentum of ~p + ~q) is larger than that of the nucleon at rest. The right one is the valence
plus connected sea case with ~p , 0 and ~q = �~p. Both curves go up as ⌧ increases since the lowest
intermediate state is the nucleon at rest whose energy is lower than that of the initial state with a
moving nucleon (i.e. mN < E~p.)

The Minkowski hadronic tensor W11(q2, ⌫), up to a constant, is just the spectral density !(⌫) in
the expression of the Backus-Gilbert method. After doing the Backus-Gilbert reconstruction using
the data in the ~p = 0 case, we get the Minkowski hadronic tensor W11 as shown in the left plot of
Figure 4.

The lowest peaks are the elastic peaks at ⌫ = E~p+~q � E~p as expected. The second peaks are related
to the quasi-elastic peaks of the �N reaction which are the excited nucleon states which includes
Roper state, S 11, ⇡N, etc. When the deep inelastic region sets in as in the experimental �p total cross
section ��p

tot in the right panel of Fig. 4, the density of the spectral function is expected to be smooth,

• Liang, Liu and Yang, EPJ Web Conf. 175 (2018)
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The connection between the deep-inelastic structure functions and the quark structure of the
nucleon is commonly rendered by the parton model. Although providing an intuitive language,
in which to interpret the deep-inelastic scattering data, the parton model is incomplete. The

theoretical basis is the operator product expansion (OPE). The operators in the expansion are
classified according to twist. The parton model accounts for twist-two contributions only, and
cannot accommodate power corrections arising from operators of higher twist. Power corrections

are inseparably connected with the leading-twist contributions, as a result of operator mixing [1].
Consider, for example, a generic moment of any deep-inelastic structure function of the nucleon

regularized on the lattice by a hard cut-off 1/a,

µ(q2) = c2(q2a2) v2(a) +
c4(q2a2)

q2
v4(a) + · · · , (1)

where v2 = ⟨N|O2(a)|N⟩ and v4 = ⟨N|O4(a)|N⟩ are reduced nucleon matrix elements of local

operators of twist two and four, respectively, and c2 and c4 are the corresponding reduced Wilson
coefficients. The operator O4 mixes with O2 with mixing coefficients which diverge as 1/a2.

The power divergences of v4(a) must be cancelled with those of c2(q2a2), which demands a
nonperturbative calculation of the Wilson coefficient as well. This can be accomplished by an
entirely nonperturbative calculation of the structure functions only.

So far lattice calculations of nucleon structure functions have been limited to calculations on
the parton level [2]. In this Letter we propose a method that goes beyond that and computes
the deep-inelastic structure functions, including power corrections, directly from the product of

electromagnetic currents. This approach has been called ‘OPE without OPE’ elsewhere [3]. For
previous and related work on the subject see [4, 5, 6].

The starting point is the forward Compton amplitude of the nucleon [7],

Tµν(p, q) = ρλλ′

∫

d4x eiq·x⟨p, λ′|T Jµ(x)Jν(0)|p, λ⟩ , (2)

the time ordered product of electromagnetic currents sandwiched between nucleon states of mo-

mentum p and polarization λ, where q is the momentum of the virtual photon and ρ is the polar-
ization density matrix. For simplicity, we will restrict ourselves to unpolarized structure functions
only with 2ρ = 1. We are then left with

Tµν(p, q) =

(

δµν −
qµqν

q2

)

F1(ω, q2) +

(

pµ −
p · q

q2
qµ

) (

pν −
p · q

q2
qν

)

1

p · q
F2(ω, q2) , (3)

where ω = 2p ·q/q2. Euclidean metric is understood. Crossing symmetry, Tµν(p, q) = Tνµ(p,−q),

implies that F1 is an even function of ω and F2 an odd function, F1(−ω, q2) = F1(ω, q2),

F2(−ω, q2) = −F2(ω, q2). In the physical region 1 ≤ |ω| ≤ ∞

ImF1(ω, q2) = 2πF1(ω, q2) , ImF2(ω, q2) = 2πF2(ω, q2) , (4)

where F1 and F2 are the deep-inelastic structure functions of the nucleon. Using the OPE, one
can express F1 and F2 in terms of moments of F1 and F2, which are amenable to calculation

on the Euclidean lattice. Alternatively, F1 and F2 can be written as dispersion integrals over ω,
which leads to the same expressions.

2

Let us first consider the OPE of F1 and F2. After some simple algebra we obtain [7]

Tµν(p, q) =

∞
∑

n=2,4,···

{(

δµν −
qµqν

q2

)

4ωn

∫ 1

0

dx xn−1F1(x, q2)

+

(

pµ −
p · q

q2
qµ

) (

pν −
p · q

q2
qν

)

8

2p · q
ωn−1

∫ 1

0

dx xn−2F2(x, q2)

}

.

(5)

The series
∑

k∈N (ωx)2k in (5) is geometric and sums up to [1 − (ωx)2]−1, which leads to the
alternate expression

Tµν(p, q) =

(

δµν −
qµqν

q2

)

4ω

∫ 1

0

dx
ωx

1 − (ωx)2
F1(x, q2)

+

(

pµ −
p · q

q2
qµ

) (

pν −
p · q

q2
qν

)

8ω

2p · q

∫ 1

0

dx
1

1 − (ωx)2
F2(x, q2) .

(6)

In the limit where F1(x, q2) and F2(x, q2) become independent of q2 we have the Callan-Gross

relation F2(x) = 2xF1(x).
Alternatively, we can express F1 and F2 directly in terms of the structure functions F1 and F2,

circumventing the OPE. The amplitudes F1 and F2 have cuts at −∞ ≤ ω ≤ −1 and 1 ≤ ω ≤ ∞
with discontinuities (4). This leads to once subtracted dispersion relations

F1(ω, q2) = 2ω

∫ ∞

1

dω̄

[

F1(ω̄, q2)

ω̄ (ω̄ − ω)
−

F1(ω̄, q2)

ω̄ (ω̄ + ω)

]

+ F1(0, q2) ,

F2(ω, q2) = 2ω

∫ ∞

1

dω̄

[

F2(ω̄, q2)

ω̄ (ω̄ − ω)
+

F2(ω̄, q2)

ω̄ (ω̄ + ω)

]

.

(7)

While F2(0, q2) = 0, the subtraction constant F1(0, q2) contains information on the magnetic
polarizability of the nucleon and the proton–neutron electromagnetic mass shift [8]. In the fol-

lowing equations we shall discard it, as it has no counterpart in F1, nor is it accounted for by the
OPE. It can be computed like any other value of F1 though and, if necessary, has to be subtracted
from F1(ω, q2). (So, for example, from the data underlying Fig. 6.) Substituting ω̄ by 1/x, we

finally obtain

F1(ω, q2) = 4ω2

∫ 1

0

dx x
F1(x, q2)

1 − (ωx)2
, F2(ω, q2) = 4ω

∫ 1

0

dx
F2(x, q2)

1 − (ωx)2
, (8)

where we have identified F1(ω̄, q2) and F2(ω̄, q2) with F1(x, q2) and F2(x, q2), respectively. If we
insert (8) into (3), we obtain (6), in agreement with the OPE resummed. It should be noted that
the structure functions F1(x, q2) and F2(x, q2) include higher twist contributions, as we have not

made any assumptions on F1 and F2 other than on the analytic structure.
To simplify the numerical calculation, we may choose µ = ν = 3 and p3 = q3 = q4 = 0. We

then have

T33(p, q) =

∞
∑

n=2,4,···

4ωn

∫ 1

0

dx xn−1F1(x, q2) (9)

3

that the structure function Fu−d
1 can be well reproduced from a relatively small set of data, except

perhaps for x ! 0.05. Similar results are obtained for the singlet structure function Fu+d+ū+d̄+s̄
1 .

We have not made any attempts to optimize the SVD. It can be improved in several respects.
A Bayesian approach [14] to alleviate overfitting, for example, might lead to particularly robust

results.
There are other possibilities as well to compute the structure function from the Compton am-

plitude. A particularly promising approach is to fit the moments, for example in the interpolating
polynomial (15), by an appropriate function µ(s) with µ(n) = µn and employ an inverse Mellin
transform on µ(s) to obtain F1(x). It turns out that the moments can be fitted surprisingly well by

the simple expression
µ(s) = A (s + α)−β , (22)

for which the inverse Mellin transform is known analytically [15]. Starting from the moments

6 µn =
∫ 1

0
dxxn [u(x) − d(x)], the result of the Mellin transform is shown in Fig. 5.

The analysis so far has been limited to ω ∈ [0, 1]. The SVD method can be extended to larger
values ω > 1 without problem. This will allow us to probe the small-x region of F1(x), which is

not accessible through moments of the structure function. Indeed, by extending the calculation to
ω = 2, we were able to retrieve the singlet structure function Fu+d+ū+d̄+s̄

1 (x) [13] down to fractional
momenta x ! 0.005, which was not possible before. Odd moments of the structure functions can

be obtained by also including the local axial vector current ψ̄ f (x)γ3γ5ψ f (x) to (11) and studying
the interference with the vector current. This is achievable through a simple extension of the

procedure described above. The method can be generalized to nonforward Compton scattering
as well. That will allow us to derive generalized parton distribution functions (GPDs).

There is the question what accuracy can be achieved with real data. It turns out that the second

derivative of the nucleon energy can be computed rather accurately. In a proof-of-principle study

Figure 6: The proton Compton amplitude T33(p, q) for momenta p⃗ = (2,−1, 0), (−1, 1, 0),
(1, 0, 0), (0, 1, 0), (2, 0, 0), (−1, 2, 0), (1, 1, 0), (0, 2, 0), (2, 1, 0), (1, 2, 0), from left to right, and

q⃗ = (3, 5, 0), in lattice units. The current has been attached to the d quark, leading to the ‘hand-
bag’ diagram in Fig. 1. ZV has been taken from [17]. The solid line shows a sixth order polyno-

mial fit (giving χ2/dof = 0.9), and the shaded area shows the error.

8

• A. J. Chambers et al. (QCDSF), PRL 118 (2017)
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• Restoration of Rotational Symmetry in the Continuum 
Limit of Lattice Field Theories
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• Davoudi and Savage PRD 86 (2012)

�̂L,M (x; a,N) =
3

4⇥N3

|n|�NX

n

⇤ (x)U (x,x+ na)⇤ (x+ na) YL,M (n̂)

HOW ABOUT QCD AND BEYOND CLASSICAL EFFECTS?

FEATURE 2: NONVANISHING TADPOLES WITH LATTICE REGULARIZATION

ZD and Savage, PRD 86, 054505 (2012).

AN EXAMPLE:

C(5;RV )
30;10 (N)

�5
O

(5;RV )
z (x; a) +

C(3)
30;30 (N)

�3
O

(3)
zzz (x; a) +

C(5)
30;30 (N)

�5
O

(5)
zzz (x; a)+

C(5)
30;50 (N)

�5
O(5)
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ZD and Savage, PRD 86, 054505 (2012).
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Outline

• Large-momentum effective theory 
• Formalism 

• Factorization formulas 

• Lattice calculation of collinear distributions 
• Renormalization 
• Power corrections 
• Perturbative matching 

• Lattice calculations 

• Systematics 
• Other approaches 

• TMDs from lattice QCD 
• Quasi-TMDs and relation to TMDs 

• Collins-Soper kernel from lattice 

• Summary and outlook
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Quasi-TMDPDF

• Definition: 

• Relationship to the physical TMDPDF:

�36

f̃ TMD
q (x, ⃗b T, μ, Pz) = ∫

dbz

2π
eibz(xPz)Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ, a)

B̃q(bz, ⃗b T, a, L, Pz)

S̃q(bT, a, L)

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);  
• M. Ebert, I. Stewart, Y.Z., PRD99 (2019); 
• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037.

f̃ TMD
ns (x, ⃗b T, μ, Pz) = CTMD

ns (μ, xPz) gS
q(bT, μ) exp[ 1

2
γq
ζ (μ, bT)ln

(2xPz)2

ζ ]

Perturbative matching coefficient
Nonperturbative function for 
large bT, depending on the 
choice of the quasi-soft factor

CTMD
ns (μ, xPz)

gS
q(bT, μ)

× f TMD
ns (x, ⃗b T, μ, ζ)+𝒪 ( bT

L
,

1
bTPz

,
1

PzL )bz ∼
1
Pz

≪ bT ≪ L

b⊥

x

-z

L

y

L

gS
q(bT, μ) = 1 + 𝒪(α2

s )

For more details see Yong Zhao’s talks on 
Monday and Thursday.
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Collins-Soper kernel of TMDPDF from 
lattice QCD

�37

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

2)

b⊥

t
z

q

q

bz

L

Collins-Soper (CS) kernel does not depend on the 
external hadron state, which means that one can 
calculate it with a pion state including heavier than 
physical valence quarks.

Quasi beam function  
(or unsubtracted quasi-TMD)

• M. Ebert, I. Stewart, Y.Z., PRD99 (2019); 
• M. Ebert, I. Stewart, Y.Z., JHEP09(2019)037; 
• M. Ebert, I. Stewart, Y.Z., in progress.
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A first look at the CS kernel
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1 loop
2 loop
3 loop

x=0.4
x=0.45
x=0.5
x=0.55
x=0.6

0.0 0.2 0.4 0.6 0.8

-1.5

-1.0

-0.5

0.0

bT [fm]

γ ζ
q (
μ=
2
G
eV
,b

T
)

Caveat: low stats and operator mixings not considered.

Pz
1 = 1.3 GeV, Pz

2 = 1.9 GeV

a = 0.06 fm

γi
ζ(μ, bT) = − 2∫

μ

1/bT

dμ′�
μ′�

Γi
cusp[αs(μ′�)] + γi

ζ[αs(1/bT)]

Prel
im

ina
ry!

• P. Shanahan, M. Wagman, Y.Z., in progress.

!  running with Nf=0.αs



Yong Zhao, POETIC 2019

Conclusion

• A systematic procedure to calculate the collinear PDFs have 
already been established with the LaMET approach; 

• Current lattice results have shown promising signs for the 
extraction fo the x-dependence of PDFs; 

• There are still systematic uncertainties that need to be 
improved or constraint; 

• Progress has also been made with other approaches; 

• Extension of LaMET to TMDPDF have been under study, and 
progress is also being made in lattice calculations.
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