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Introduction

B-meson light-cone distribution amplitudes (LCDAS) serve as
Indispensable ingredients for

1. Establishing QCD factorization theorems of exclusive B-meson

decay amplitudes.
2. Precision calculations of the B-meson decay observables.

3. Constructing the light cone sum rules of numerous hadronic
matrix elements.

But our knowledge of these distribution amplitudes is very limited.
They encode information of the non-perturbative strong
Interaction dynamics.
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Large-momentum effective field theory: LaMET
LaMET is a theory allowing ab initio computation of
light-cone physics on a Euclidean lattice!

Step 1: Constructing lattice operators and evaluate the ME
Step 2: Lattice calculations

Step 3: Extracting the light-cone physics from the lattice ME



LaMET

* (alculate the equal-time correlators (quasi quantities) instead

of the light-cone ones.

* The matrix elements defined by these equal-time correlators
can be simulated on the lattice.

* The quasi observables can be factorized as the convolution of
a matching coefficient and the corresponding light-cone
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Matching the Quasi Meson Distribution Amplitude in RI/MOM scheme
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Derive the one-loop matching coefficient that matches RI/MOM quasi-DA in the
Landau gauge to MS LCDA within the framework of LaMET.
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It is natural to extend this logic to B-meson LCDA.



B-meson LCDA

B-meson light-cone distribution amplitudes: The leading-
twist LCDA ¢%(n, 1) In coordinate space is defined by the
renormalized HQET matrix element of a light-ray operator,

(0](7,Ys) ()tys (Y hy) (0)| B(v))
=i fp{u)mpdg(n, 1)

Yi(ni) = P {Exp [igs / dm-As(xﬁ)]} ,

— o

Applying the Fourier transformation for ¢5(n. 1) leads to the
momentum-space distribution function
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B-meson Quasi-DA

Following the construction presented before, we can define the
B-meson quasi distribution amplitude as

T dr

ifp(1) mp oh (& u) 2/ —— el neUeT

oo 2T

(0[(gs Ys) (Tnz) #hzys (VS ho) (0)|B(v)),

The correlation direction has switched to z axis, 7. = (0,0,0,1)



Factorization Formula

Factorization formula:
Based on the hard-collinear factorization, it Is straightforward
to have the factorization of quasi-DA as:

> A
op(&p) = / dw H(§, w, n, - v, u)¢§(w,u)+o( QCD) |

We extract the coefficients by calculating these diagrams
below from both LCDA and gausi-DA sides,




One loop matching coefficient

The plus distribution is defined by (with g > 1)
ag
(Flew)o = Flew) -8 —w) [ dtF(e.n

One can readily identify that the hard correction
from the 1-loop box diagram Is power suppressed




One loop matching coefficient

(a)

1. For LCDA side,
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One loop matching coefficient

1. For LCDA side, d
Cusp
) § Y
g 1 1 1 u2
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One loop matching coefficient

1. For LCDA side,

2. For quasi-DA side,

(€ = gy |Mozw), Ow )
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One loop matching coefficient

A
Pl = / dw H(E, w, n= v, p) o (w, 1) + O( QCD)-

0 nz'vf

The obtained hard function reads,

H( w,n, v, p) = 0(§—w)+ % (k) Cr { ! {3 —21n (271. .UM ) _ In (L)- 0(=¢) 0(w)
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Perspectives for lattice calculations

It will be Instructive to understand the characteristic feature of
vt (& 1) with distinct non-perturbative models of ¢5(w, 1)

Taking advantage of the two phenomenological models

W —Ww/Wo
ngjl(w, = 1.5 GGV) — pe / ;
0
1 2 (o) — 1)
+ __ _ B

y 4 k L W
Two kK2+1°  1.5GeV’

We can imply the shapes of ¢4 (& 1)



Perspectives for lattice calculations

The resulting w-shapes of the B-meson quasi-distribution
amplitude ¢5(§ =w,u=1.5GeV)

1.5p" 20F
1.5F
1.0F quasi DA (ny;'v=15) - quasi DA (nz'v = 5)
" ----- = quasi DA (n,-v = 10) 1.0 & \e=ee- = quasi DA (nz'v=10) "
\
05F 05F
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Summary

® \\Ve have proposed new method for the model-independent
determination of the light-cone distribution amplitude (LCDA)
of the B-meson in heavy quark effective theory (HOQET).

® Derive the one-loop matching coefficient that matches quasi-
DA to LCDA within the framework of LaMET.

® These results are of Importance for exploring the delicate
flavor structure of the SM and beyond at the LHCb and Belle |l
experiments.
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B-meson light-cone distribution amplitude from lattice QCD

ues of n, - v , where the reference values of the loga-
rithmic inverse moments wy = 350 MeV and Jg) =14
are taken for the illustration purpose. It is evident that

FIG. 2: The resulting w-shapes of the B-meson
quasi-distribution amplitude ¢% (¢ = w, u = 1.5GeV) in
bHQET from the hard-collinear factorization theorem

(EI) and from the two non-perturbative models of

oL (w, p = 1.5GeV) presented in ([14), with two different

values of n, - v. The shadow region of |w| < 200 MeV is
excluded due to inapplicability of the hard-collinear
factorization formula (E[) for n, -v w| <1.0GeV.




B-meson light-cone distribution amplitude from lattice QCD

We use projection to handle the spinor part,

1
Ntp = E(

1
1,0,0,1), N—p = E(laoaoa_l)& U=04N— + VN,




B-meson light-cone distribution amplitude from lattice QCD

Multiplicative renormalization: To facilitate the
lattice QCD evaluation of the quasi-distribution ampli-
tude @ 5(&, p), it is of vita importance to show that such
quasi-quantity will renormalize multiplicatively to all or-
ders in perturbation theory applying the lattice regular-
ization scheme. For this purpose, it has proven to be most
convenient employing the one-dimensional auxiliary field
formalism for the contour integrals introduced in [31].

The resulting Lagrangian for the ultra-collinear gluon in-
teractions with both the effective bottom-quark field h,
and the auxiliary field @ can be written as

L= EbHQET + Q(.I) (an - D,, — 67’!’&) Q(EL‘), (5)

where the “dynamical” mass term originates from the
self-energy correction to the Q field in the dimensionful
cut-off scheme [32], in analogy to the scheme-dependent
residual mass term in the HQET formalism [33H35],
and the ultra-collinear covariant derivative D¥ = 0 —
igs T A% #*.  Alternatively, the ultraviolet (UV) lin-
ear divergences from the Wilson-line corrections in (EI)
can be removed by introducing the proper subtraction
term defined by a simpler matrix element but with the
same power divergences [36H38]. It is straightforward
to rewrite the non-local operator defining the B-meson
quasi-distribution amplitude as follows [39] 40]

O(1n.,0) = [Xn(Tnz) #o7s5 Q(Tnz)] [Q(0) 2y (0)]
Jyo(rnz) Jon,(0),

(6)

Thanks to the heavy-quark spin symmetry and the
light-quark chiral symmetry for the effective Lagrangian
L, both of the two currents 7, o and Jop, renormalize
multiplicatively under radiative corrections [I]

R R
jXQ(Tnz) - Z)((Q)j)gg)(Tnza}u)a
R R
Ton,(0) = 25 T8 (0,1) . (7)

at all orders in agz. We are therefore led to conclude the
autonomous renormalization of the composite non-local
operator O(7n,,0), namely

R R 4
O(rn.,0) = 289 257 O (rn.,0,p). (8)



B-meson light-cone distribution amplitude from lattice QCD

Box diagram
Non-physical region ,

as cf 1 1 w

] - (vz (w-w0z) +v0 (v + w0z)) Log[l +

w-wlz

2v0 w0z
2v0wLog[ ]
4n vOwlz w-wlz

(vO+vz) (w-w0z)

l Vz -> infinity

0
Physical region,

Log[Lw] —diw|-2Y14+vz? wLog‘[E]

V1+vz? -vz

as ef 1 1 1
—(sz (\}1+v22 —vz] + (\)1+vz2 +vz] w]
4 m wlz w-wlz

l Vz -> infinity
Same as result of LCDA

cfasw (-Log[p] + 2 Log[t]) box diagram

27 (w-w0z) wlz



B-meson light-cone distribution amplitude from lattice QCD

LCDA: w:Lw-L; quasli: w=vw,
Fhh, X ko—'—+=%.

v

Compare with plus function for light-meson,

(Fle.y)}o = Flay) — 6z —y) / At F (2, t)

2. Evolution equations.—The LCDA 1is given by the
Fourier transform

1 L
Sow =5 [drer daw @

o — ( 1 0.0 3 ) of a function @2 (7, u) defined in terms of a B-meson

matrix element in HQET. Denoting by % the effective
heavy-quark field and by ¢, the soft spectator quark,
and using a mass-independent normalization of meson
states, we write [2]

iF(u)

(014,(2) S,(z, OAT h(0) |B(v)) = = —— % (7, )
X tr(;{r : —IZ_ 4 ys).

3)



B-meson light-cone distribution amplitude from lattice QCD

VERIFICATION OF THE RESULT.

We want to make comparison of Inpu dependence between our result and Lange-Neubert kernel, in their paper
‘Renormalization-Group Evolution of the B-Meson Light-Cone Distribution Amplitude’, it follows that the LCDA
obeys the evolution equation,

dlnp,qbf(w’ p) == A dw;*f+(w,w’,;1,)¢_ﬂ|_{w’,!£) \ (11)
here,
. / _ I , -
Yolw, ' p) = [4111——2] 8w —w) +wl(w,w', a,) . 12)
w

In our paper, the plus function definition of our result is different from their paper, we first convert our plus function
to their plus function, this will induce a § term,

F, (our paper) = F,(L-N paper) + §(w — ') foc dtF. (13)
2w
So the second line in Eq.(10) would contribute a § term (we only focus on In p term),
5(w—w’)£jdw’ﬁln;;2=—1n41n,u2. (14)
Add this term to the last line in Eq.(10), we have (we only focus on In p term),
D= [(2 In(20°) + 1) In p* = 2In g + 21n (E)Ql §(w—w')—Indlng’. (15)
So,
WDty (16)

dln p w

The definition in LCDA, in our paper, of w (our paper) is v"w (w defined in L-N paper), and when we doing matching,
we make a re-scale, w — %, so the w’ appears in our final matching coefficient is

w' (our paper) = v*w’ (L-N paper), (17)
in large v* limit. And the Eq.(16) written in Lange-Neubert's notation is,

dD
—amZ 2. (18)
W

dlnp

This is as same as the § term in Eq.(12).



Sketch of LCDA in PRD

The matching coefficients have been calculated in dimensional
regularization and transverse momentum cutoff schemes.

J.-H. Zhang, J.-W. C, X. Ji, Lu. J, H.-W. L Phys.Rev. D 2017
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Light-cone distribution amplitudes of vector meson in large momentum
effective theory

(PlO(v"75,0)[0) = ifpP*,
(P,ej|0(+,0)|0) = fy Mye|
(P,eL|O(™,0)[0) = i fiF (¢ P — €] P¥)

Oy (€7) = ¥(§7)TW (£, 0)(0), (1)

where I' = y7+¢ for transversely polarized vector meson, and I' = 47 for longitudinally polarized vector meson.
W(£~,0) is the Wilson line with the end points (0,£7,0,) and (0,0,0,). In LCDAs the Wilson line is light-like

-
W(™,0) = Pexp [ — igs / n- A(An)d/\] : (2)

0

where P denotes that the exponential is path ordered. We also need the Fourier transformation of these operators,
which are denoted by O, (z)

Oy (z) = f C PO ), (3)



Matching the Quasi Meson Distribution Amplitude in
RI/MOM scheme

The LCDAs are defined by the matrix elements of non-local gauge invariant quark
bilinear operators, in which the two fermion fields are separated in the n direction.

Oy (67) = P(ET)TW(E7,0)3(0),
Fourier transformation

dE~ . o~ p+
Of(a) = [ e =€ P Oh(),

Take longitudinally polarized vector for instance,
m

fv g et oy (@, p) = (V. P.e |0y (x)[0),

m * *
fv e = (V.P.e'|0)(0)[0)
So,

(V. P, €"|Oy (x)|0)

W) = 5B 0T (0)]0)




Matching the Quasi Meson Distribution Amplitude in
RI/MOM scheme

Similarly, for Quasi-DAs
OF(Z)— ()T W (2,0)4(0),

fveim=ll (z, P,) = (V, P,¢* |0 ()|0),
5 = (V. POV (0)[0)
So, we have
| |

(V, P, e*| O (0)]0)

The factorization formula, ~ - -
¢R(F7 Z, P ’ IUJRapR)

1
p? p:
:/ dy Cr (a: Y, T )cb(Fyu)
0 I8 pR

M?  Ajcp
Ho ((Pz)Q’ (Pz)?) ’




Matching the Quasi Meson Distribution Amplitude in
RI/MOM scheme

The renormalized quasi-DA in the RI/MOM scheme can be matched to LCDA through
the factorization formula,

QBR(F::E? Pz? ”Rapf?,)

1
PZ PZ
:/ dy Cr ($ Y, T, — —) oI, y, )
0 & pR

{ M> Adep
O \(Pz)27 (Pz)2) ?

Cr (2,Y) ltree= 6(z — ) where r = ,u.:z,g/(pfa)g.

The bare matching coefficient

C( ) (F T, 1, P—) = N( )(F z,y, P?) — oW (T, z,y, p)
T



Matching the Quasi Meson Distribution Amplitude in
RI/MOM scheme

We have calculated T' = ~v"vs, v, v, for pseudoscalar, longitudinally polarized vector
and transversely polarized vector meson LCDAs;

I' = v*v5, 7", vy, for pseudoscalar, longitudinally polarized vector and transversely
polarized vector meson quasi-DAs, respectively.

Since we take the on-shell limit to obtain the bare matching coefficient, c}g”.

( Hl(rz-fzy)]ﬂy) r<0<y

5S (Fg:y E) _ asCp ) Hg(l“,m,y-,Pz/m]Hyg O<z<y

p or | [Ho(D)1 =2, 1 =y, P*/p)] () v <z <1

\ Hl(rl_xl_y)]+(y) y<l<czx

where
it - { FE L R Loy
y—zl-y -z L y-wy T -
[y e (e - 5) D=t
o (T 22 ) = § ey (m B0 1) 4 vt s Ty

Beri i sl (=1 = ) B LA




Matching the Quasi Meson Distribution Amplitude in
RI/MOM scheme

> > >
y
A bba%
. o '
A
(d) (e) (f)

FIG. 1: Feynman diagrams for LCDAs and quasi-DAs at one loop level. The double line denotes the Wilson line.



Matching the Quasi Meson Distribution Amplitude in
RI/MOM scheme

In order to combine the “real” and “virtual” contribu-
tions (defined in Ref. [? |) in a compact form at one-loop
level, we introduce a plus function [h(z,y)] +(y) Which is
defined as

/ de [z, y)] 4 ()9(x) = / dx h(z,y)lg(z) — 9(y)) (22)



Quark Generalized Parton Distributions

The momentum fraction z € [—1, 1], which falls into the following three
regions:

@ z € [—1,—£|, both momentum fractions z+ £ and z — £ are negative:
emission and reabsorption of antiquarks with respective momentum fractions
E—z and —£—u.

@ zc€[—£,&|,onehas z+ & >0 but x— & < 0: a quark with momentum
fraction z+ £ and an antiquark with £é—x emitted from the initial proton.

@ z € [£ 1] both z+ £ and x — £ are positive: emission and reabsorption of a
quark.

The first and third case are commonly referred to as DGLAP regions and the
second as ERBL region.



Large Momentum Effective Theory (LaMET)

Relating parton physics observables to equal-time correlators in a large
momentum nucleon states (quasi-observables).

@ Light-cone observables: p, — oo, then A — oc.
Quasi observables: A — oo, then p, — oo.
These two limits do not commute!

@ They have same IR but different UV behaviours, while the UV
difference is controllable and calculable.

Factorization formula between light-cone and quasi GPDs:

L r & W M? A%}CD
t 2] — _Z R H y ata O
H(z, &, t, p,) /1‘ | H(y " pz) (4, &5t 1) + (p§ P2 ).




PPT

Order of limits

* Thus the difference between the matrix
elements o0 and O is the order of limits:

o: P — oo, followed by UV cut-off
O: UV cut-off imposed first, followed by P — o

= This is the starndard set-up for effective field

theory, such as HQET. The generic argument for
factorization follow through. Hence we have
large-momentum effective field theory: LaMET.

= Perturbative proof case by case.



PPT

A Euclidean quasi-distribution

= Consider space correlation in a large momentum

P in the z-direction. 0
i, ) = [ e Py Ny -

X exp (—."g [: dz';—lz(:’)) P (0)|P)
Jo

* Quark fields separated along the z-direction
* The gauge-link along the z-direction
* The matrix element depends on the momentum P.



PPT

Taking the limit P-> oo first

= After renormalizing all the UV divergences, one has
the standard quark distribution!

* One can prove this using the standard OPE
* One can also see this by writing

|P>=U(A(p)) | p=0>
and applying the boost operator on the gauge link.

N
\

{3




PPT

Step 1: Constructing lattice
operators and evaluate the ME

= Construct a frame-dependent, Euclidean quasi-
operator “0”.

= In the IMF limit, O becomes a light-cone (light-
front, parton) operator o.

0, =AY - o=AA"

There are many operators leading to the same light-
cone operator.

0,=4° - o=A
O;=aA’+ (1 —a)A®> - o=AA"



PPT

Step 2: lattice calculations

= Compute the matrix element of O on a lattice

* |t will depend on the momentum of the hadron
P, O(P,a).

= |t also depends on the details of the lattice
actions (UV specifics).



PPT

Step 3: Extracting the light-cone
physics from the lattice ME

Extract light-front physics o(u) from O(P,a) at
large P through a EFT matching condition or

factorization theorem
04
O(P,a) = Z(—)o(u) + P4 + -

Where Z is perturbatively calculable.

Infrared physics of O(P,a) is entirely captured by
the parton physics o(p). In particular, it contains
all the collinear divergence when P gets large.
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Renormalization in Large Momentum Effective Theory of Parton Physics

Xiangdong Ji.!*? Jian-Hui Zhang,® and Yong Zhao*

II. EFFECTIVE QCD WITH AUXILIARY
“HEAVY-QUARK” FIELD

To be concrete, consider the following non-local oper-
ator

O(z,y) = ¢¥(x)T' Lz, y)¥(y). (1)

where 1,1 denote the bare quark fields and T a Dirac
structure. L(x,y) is a path-ordered gauge link from y to
'I‘T

dz*

L(z,y) = Pexp (—ig [ X KAM(Z(,\))) (2)

IV. RENORMALIZATION OF NON-LOCAL
OPERATORS IN DIMENSIONAL
REGULARIZATION

Now let us consider the renormalization of the non-
local operator, such as in Eq. (), which appears in the
LaMET approach to parton physics. In the effective the-
ory, the non-local operator becomes a product of local
composite operators,

O(z2,721) = j(22)j(z1). (10)

after we replace the non-local Wilson line by the product
of two auxiliary “heavy quark” fields. This operator can
be multiplicatively renormalized by

O(z2, 21) = Z;Z;0g(22,21) (11)

to all orders in perturbation theory with Z; =
Z;/zZl/QZVj, where Z,, Zq. Zy, are the renormalization
constant for the light-quark, heavy-quark and vertex, re-

spectively.

To study the renormalization property of the above
operator, we introduce an “heavy quark” auxiliary field
(color source without spin degrees of freedom) @ with
color 3, and its conjugate Q, with color 3. We extend
QCD to include this “heavy quark” interaction with the
gluon field, and introduce the following Lagrangian

L= ﬁQCD + @(x)m . DQ(QS), (3)

where D, = 0,,+igt® A}, is the covariant derivative in fun-
damental representation. For a real heavy quark or time-
like Wilson line, n* is a timelike vector n* = (1,0,0,0).
whereas for a spacelike Wilson line n#* can be chosen as
n* = (0,0,0,1). We will focus on the latter case in the
following, although the discussion may go through for
any n. So long as there is a non-zero time component n?,
the “heavy quark” is dynamical, but follows a designated
world line.

In the above theory, we can replace the bilocal operator
O(z,y) by a new operator,

O(z,y) = ¥(2)TQ(z)Q(y)¥(y). (4)






