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Formation of Jets in QCD

↵s . 1

e or p

soft and collinear 
enhancements

Perturbative soft and 
collinear splittings happen 

at intermediate time

↵s . 1

Hadronization at late 
time at low energy scale

↵s � 1

probability 
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Eg(1� cos �)

Production of a new 
jet suppressed by

↵s ⌧ 1

p

K

⇡
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⇢

e or p

✓

Eg

• Jets probe strong interaction over wide 
range of scales

• Need to resum large perturbative logs
• Separate pert. and non-pert. physics

• These are problems of scale separation: 
a job for EFT 



Event shapes  
and the 
strong coupling

PDG 2016:

Hoang et al. , PRD 91 
(2015) 094018:

Event 
shapes



Extractions from 
exclusive jet cross 

sections have order 
10% uncertainty, 

dominated by theory

Improve to 
level of e+e-?

Jets in DIS and the strong coupling

C. Glasman, in the Proceedings 
of the Workshop on Precision 

Measurements of         
[1110.0016]  

αs



N-jettiness
•A global event shape measuring degree to which 
final state is N-jet-like. 

⌧N =
2

Q2

X

k

min{qA · pk, qB · pk, q1 · pk, . . . , qN · pk}

Stewart, Tackmann, Waalewijn (2010)

groups particles into regions, 
according to which vector qi 
is closest.

# beams # jets

p p
qAqB

q1

qN

Factorization and 
Resummation-friendly



1-Jettiness in DIS

• “1-jettiness” in DIS measures final states 
with beam radiation + one additional jet

• Different choices of axes are 
possible: different sensitivity 
to ISR transverse momentum
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⌧1 =
2

Q2

X

i2X

min{qB · pi, qJ · pi}

(c) ⌧m
1

pT
B averaged over, pT

J = 0

qJ true jet axis

HJ
HB

qB = xP
q

pB

pJ

D. Kang, CL, I. Stewart (2013)

also Z. Kang, Liu, Mantry, Qiu 
(2012, 2013)
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DIS thrust

τb
1 :

⌧1 =
2

Q2

X

i

min{qB · pi, qJ · pi}
qB = xP

qJ = q + xP

same as DIS thrust of 
Antonelli, Dasgupta, 
Salam (1999)

⌧ b1
Breit
= 1� 2

Q

X

i2H
b
J

piz

e e0

P

HJHB

pB

pJ

In the Breit frame:

q

xP � k?⇠P

pISR = (⇠ � x)P + k?
qJ = q + xP � k?

k? ⇠ Q�

sensitive to ISR transverse momentum: ultimately depends only on 
momentum in jet or 

“current” hemisphere

(thanks to momentum 
conservation)

(not true of        )τa
1



Sensitivity to strong coupling



Fixed-order computation
Cross section:

Hadronic tensor:

Measure thrust of final state:

2-particle phase space:
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Diagrams to         :𝒪(αs)
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D. Kang, CL, Stewart (2014)



Fixed-order computation
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Fixed-order results D. Kang, CL, Stewart (2014)

Structure functions:

Group into singular and non-singular parts:

Singular terms:

Need  
 

resummation
ln τ

F(x, Q2, τ) = ∫
τ

0
dτ′�ℱ(x, Q2, τ)

(integrated:)



Fixed-order results D. Kang, CL, Stewart (2014)

Non-singular terms:
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Singular vs. non-singular D. Kang, CL, Stewart (2014)
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Contributions to differential thrust spectrum:

Add up to total integrated cross section:



Singular vs. non-singular

Region where resummation is 
important is thus a function of x:
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• In the narrow-jet limit             the logs grow large and spoil the perturbative 
expansion. Reorganize the expansion:

Large Logs

• If we calculate event shape       cross section in QCD perturbation theory, we will find:

Next-to-  
Leading Log 

(NLL)

Leading 
Log  
(LL)

NNLL

ln�(⌧) ⇠ ↵s(ln
2 ⌧ + ln ⌧)

+ ↵2
s(ln

3 ⌧ + ln2 ⌧ + ln ⌧)

+ ↵3
s(ln

4 ⌧ + ln3 ⌧ + ln2 ⌧ + ln ⌧)

+
...

...
...

...

⇠ ↵�1 ⇠ 1 ⇠ ↵New power counting when ln ⌧ ⇠ 1
↵

:

⌧

⌧ ! 0

Z ⌧

0
d⌧

1
�0

d�(x,Q2)
d⌧

⇠
"
1 +

↵s

4⇡

✓
F12 ln2 ⌧ � F11 ln ⌧ + F10

◆

+
⇣↵s

4⇡

⌘2
✓

F24 ln4 ⌧ + F23 ln3 ⌧ + F22 ln2 ⌧ + F21 ln ⌧ + F20

!
+ . . .

#

• These logs are of large ratios 
of disparate physical scales

• Need to identify and factor 
these scales

• Use RG evolution to resum 
the logs



Momentum scales



SCET modes Bauer, Fleming, Luke, Pirjol, 
Stewart (2000-02)

Chiu, Jain, Neill, Rothstein 
(2011-12)



Factorization Theorem for DIS thrust

Start in QCD:
d�(x,Q2)

d⌧1
= Lµ⌫(x,Q2)Wµ⌫(x,Q2, ⌧1)

⌧̂1|Xi = ⌧1(X)|Xi

leptonic 
tensor

hadronic 
tensor

Wµ⌫(x,Q2, ⌧1) =

Z
d4x eiq·xhP |q̄�µq(x)�(⌧1 � ⌧̂1)q̄�

⌫q(0)|P i

u

ud

u

ud

µ ⌫

x 0

⌧1Measure of particles crossing the cut



Match onto 2-jet 
operators in SCET:

collinear jet operators in SCET

�n = [Wn⇠n]

collinear Wilson line collinear quark field

soft gluon 
Wilson linesYn1,2

u

ud

u

ud

µ ⌫

x 0

Wµ⌫(x,Q
2, ⌧1) =

Z
d4x eiq·x

X

n1,n2

Z
d3p̃1d

3p̃2e
i(p̃2�p̃1)·xC⇤

µ(p̃1, p̃2)Cµ(p̃1, p̃2)

⇥ hPnB |�̄n2,p̃2(x)T [Y
†
n2
(x)Yn1(x)]�n1,p̃1(x)

⇥ �(⌧1 � ⌧̂n1
1 � ⌧̂n2

1 � ⌧ s1 )

⇥ �̄n1,p̃1(0)T [Y
†
n1
(0)Yn2(0)]�n2,p̃2(0)|PnB i

Factorization Theorem for DIS thrust



Match onto 2-jet 
operators in SCET:

collinear jet operators in SCET

�n = [Wn⇠n]

collinear Wilson line collinear quark field

soft gluon 
Wilson linesYn1,2

u

ud

u

ud

x 0

“beam function”

“jet function” “soft function”

Wµ⌫(x,Q
2, ⌧1) =

Z
d4x eiq·x

X

n1,n2

Z
d3p̃1d

3p̃2e
i(p̃2�p̃1)·xC⇤

µ(p̃1, p̃2)Cµ(p̃1, p̃2)

⇥ hPnB |�̄n2,p̃2(x)T [Y
†
n2
(x)Yn1(x)]�n1,p̃1(x)

⇥ �(⌧1 � ⌧̂n1
1 � ⌧̂n2

1 � ⌧ s1 )

⇥ �̄n1,p̃1(0)T [Y
†
n1
(0)Yn2(0)]�n2,p̃2(0)|PnB i

Factorization Theorem for DIS thrust



Factor collinear and soft matrix elements:

u

ud

u

ud

x 0

beam function

jet function soft function

(+ permutations)

Wµ⌫(x,Q
2, ⌧1) =

Z
d2p̃?

Z
d⌧Jd⌧Bd⌧S C⇤(Q2, µ)C(Q2, µ) �

⇣
⌧1 �

tJ
sJ

� tB
sB

� kS
QR

⌘

⇥ h0|[Y †
n0
J
Y †
n0
B
](0)�(kS � n0

J · p̂J 0 � n0
B · p̂B0)[Yn0

B
Yn0

J
](0)|0i

⇥ hPnB |�̄nB (0)�(QB⌧B � nB · p̂nB )[�(n̄B · q + n̄B · P)�2(p̃? � P?)�nB ](0)|PnB i
⇥ h0|�nJ (0)�(QJ⌧J � nJ · p̂nJ )�(n̄J · q + n̄J · P)�2(q? + p̃? + P?)�̄nJ (0)|0i

Factorization Theorem for DIS thrust

1

�0

d�(x,Q2)

d⌧
b
1

= H(Q2
, µ)

Z
d
2
p?dtJdtBdkS�

✓
⌧
b
1 � tJ

Q2
� tB

Q2
� kS

Q

◆

⇥ Jq(tJ � p2
?, µ)Bq(tB , x,p

2
?, µ)S(kS , µ)



jet function

beam function

soft function

hard function

Factor collinear and soft matrix elements:

u

ud

u

ud

x 0

beam function

jet function soft function

(+ permutations)

Wµ⌫(x,Q
2, ⌧1) =

Z
d2p̃?

Z
d⌧Jd⌧Bd⌧S C⇤(Q2, µ)C(Q2, µ) �

⇣
⌧1 �

tJ
sJ

� tB
sB

� kS
QR

⌘

⇥ h0|[Y †
n0
J
Y †
n0
B
](0)�(kS � n0

J · p̂J 0 � n0
B · p̂B0)[Yn0

B
Yn0

J
](0)|0i

⇥ hPnB |�̄nB (0)�(QB⌧B � nB · p̂nB )[�(n̄B · q + n̄B · P)�2(p̃? � P?)�nB ](0)|PnB i
⇥ h0|�nJ (0)�(QJ⌧J � nJ · p̂nJ )�(n̄J · q + n̄J · P)�2(q? + p̃? + P?)�̄nJ (0)|0i

Factorization Theorem for DIS thrust

1

�0

d�(x,Q2)

d⌧
b
1

= H(Q2
, µ)

Z
d
2
p?dtJdtBdkS�

✓
⌧
b
1 � tJ

Q2
� tB

Q2
� kS

Q

◆

⇥ Jq(tJ � p2
?, µ)Bq(tB , x,p

2
?, µ)S(kS , µ)



H(Q2
, µ) = 1 +

↵s(µ)CF

2⇡

✓
� ln2 µ

2

Q2
� 3 ln

µ
2

Q2
� 8 +

⇡
2

6

◆
+ . . .

(B)(A) (D)(C)(A) (A)

J(t, µ) = �(t) +
↵s(µ)CF

4⇡

⇢
(7� ⇡2)�(t)� 3

µ2


µ2✓(t)

t

�

+

+
4
µ2


✓(t) ln(t/µ2)

t/µ2

�

+

�
+ . . .

known to 3 loops

Hard and Jet Functions

Hard function:

Jet function:

known to 3 loops



Beam Function and PDFs

B(!k+, x, k2
?, µ) =

✓(!)
!

Z
dy�

4⇡
eik+y�/2hPn(P�)|�̄n

⇣
y�

n

2

⌘
�(xP� � n̄ · P)�(k2

? � P2
?)�n(0)|Pn(P�)i

f(x, µ) = ✓(!)hPn(P�)|�̄n(0)�(xP� � n̄ · P)�n(0)|Pn(P�)i

transverse momentum dependent beam function:

match onto PDF

Bq(t, x,k
2
?, µ) =

X

j

Z 1

x

d⇠

⇠
Iij

⇣
t,
x

⇠
,k2

?, µ
⌘
fj(⇠, µ)

Measure small light-cone momentum 
and transverse momentum 

of initial state radiation

k+ = t/P�

k?

(B)(A) (D)(C)(A) (A)

u

ud

u

ud

x⇠

known to 2 loops; 
anomalous dimension  
known to 3 loops



• Perturbatively, it is known that

Soft function

• Soft functions for e+e- dijets, DIS 1-jettiness, and pp beam thrust:

respect to lightlike vectors na,b along the incident proton direc-
tions [13], qµa,b =

1
2 xa,bEcmna,b, where nµa,b = (1,±ẑ) ⌘ n, n̄ in

the CM frame. The 0-jettiness defined by Eq. (4) with these
vectors is related to the beam thrust ⌧B defined in [11, 12] by

⌧B = ⌧0

q
1 + q2

T /q
2, where q2 and qT are the dilepton invariant

mass and transverse momentum, respectively.
Predictions of event shapes in QCD perturbation theory ex-

hibit logarithms ↵n
s lnk ⌧ that become large in the endpoint re-

gion ⌧! 0. In this region these logs must be summed systemat-
ically to all order in ↵s for convergent, physical results [47, 48].
Modern resummation techniques are based on factorization and
renormalization group evolution, either directly in the language
of perturbative QCD [3? ] or using the techniques of e↵ective
field theory, in this case soft collinear e↵ective theory (SCET)
[49, 50, 51, 52, 53]. Both paths lead to equivalent results in
principle, though particular implementations to a given order of
accuracy in the literature may di↵er (see [23]).

The factorization approaches lead to predictions for the e+e�,
DIS, or DY beam thrust distributions (see, e.g., [8, 9, 11, 12,
13, 23, 42, 54]) each of which takes the form of Eq. (1). In
each case there is a hard function H which is a squared Wilson
coe�cient from matching the QCD current q̄�µq onto a SCET
operator (e.g., [9, 55, 56, 57]); Jn,n̄ are jet functions (defined
in, e.g., [22, 58] and computed to O(↵s) in [59, 60] and O(↵2

s)
in [20]) dependent on the invariant mass tn,n̄ of the collinear jet;
and Bi a beam function [11, 61] dependent on the transverse vir-
tuality and/or momentum of ISR. The ⌦ convolutions in Eq. (1)
combine the jet/beam variables with the soft momentum ks in S
properly to give the value of the measured observable.

A careful demonstration of factorization must also account
for Glauber modes that potentially violate it; such arguments
for particular cross sections in QCD are given in, e.g., [1, 62,
63]; formulating these kinds of arguments in SCET is under
active development, see, e.g., [64, 65], but is not our focus here.
We begin with the factorization formulae in typical use for event
shape cross sections in QCD and SCET (citations above) and
focus on properties of the soft functions they contain.

The soft functions in Eq. (1) for these event shapes are pro-
jections of the hemisphere soft functions,

S (k, µ) =
Z

d`1d`2�(k � `1 � `2)S 2(`1, `2, µ) , (5)

where the soft function on the right-hand side has two argu-
ments, `1, `2, which are the small light-cone components of the
soft radiation in either of the two hemispheres defined by the
back-to-back collinear axes n, n̄. The soft functions are defined
in terms of a matrix element of Wilson lines that arise from a
field redefinition that decouples soft and collinear interactions
at leading power in the SCET Lagrangian [52], leading to

S 2(`1, `2, µ) =
1

NC
Tr
X

i2Xs

���hXs|T [Y±†n (0)Y±n̄ (0)] |0i
���2 (6)

⇥ �
⇣
`1�
X

i2Xs

✓(n̄ · ki�n · ki)n · ki
⌘
�
⇣
`2�
X

i2Xs

✓(n · ki�n̄ · ki)n̄ · ki
⌘
,

where the trace is in color space, NC is the number of colors,
and T denotes time-ordering. The path of the Wilson lines de-

pends on whether n, n̄ are incoming or outgoing directions. Y+†n
and Y�n were defined in Eq. (2), and the other possibilities are
obtained by taking their Hermitian conjugate and/or replacing
n ! n̄. For e+e�, both lines in Eq. (6) are +, for pp they are
both �, and for DIS they are Y+†n Y�n̄ [29, 30].

Parity and time-reversal symmetry can be used to flip the di-
rections of the Wilson lines in Eq. (6) between incoming and
outgoing [63], potentially relating the e+e� and DY soft func-
tions; however, the time-ordering prescription in Eq. (6) gets
reversed [11], foiling a potential all-orders proof of equality.

The measurements of 1-jettiness in DIS or 0-jettiness in pp
may not necessarily divide particles in the final state into back-
to-back hemispheres, but boost properties of the Wilson lines
can be used in each case to express their factorization theorems
in terms of the back-to-back hemisphere soft functions [9, 11].

The perturbative result for S ee
2 is known up to O(↵2

s) [14,
15, 16], quoted in Appendix A. The DIS and DY hemisphere
soft functions di↵er only in the direction of the Wilson lines in
Eq. (6). Now we proceed to consider the relations among them.

3. Equality of soft functions at O(↵2
s)

In this section we show equality of the soft functions for the
three cases e+e� ! dijets, DIS 1-jettiness, and pp beam thrust
at O(↵2

s). Switching the direction of a Wilson line from incom-
ing to outgoing flips the sign of the i✏ in the eikonal propagators
formed by emission/absorption of gluons, e.g. Eq. (11). This
could a↵ect the value of the diagrams. Nevertheless, we show
that the final soft functions remain equal up to O(↵2

s).
First we set up some of the notation we will use in our proof.

The perturbative computation of the soft functions in Eq. (6)
can be performed either from cut diagrams with four Wilson
lines with an appropriate measurement function along the cut
[66], or by computing amplitudes for emission of n = 0, 1, 2, . . .
particles up to the appropriate order in ↵s and performing the
phase space integrals implicit in the sum in Eq. (6). We will
take the latter approach here. The result of computing Eq. (6)
up to O(↵N

s ) in perturbation theory takes the generic form,

S 2(`1, `2) =
1

NC
Tr

NX

n=0

Z
d⇧nM(`1, `2; {kn})

X

i, j

A
†

j ({kn})Ai({kn}),

(7)

whereAi({kn}) is an amplitude to emit n particles with momenta
k1, . . . , kn. The sum over amplitudes i, j goes over those pairs of
amplitudes that produce the same final state with momenta {kn}

and have total order ↵N
s . Implicitly for each product of ampli-

tudes there is a sum over the spins or polarizations and colors of
the final state particles. The trace in Eq. (7) is over products of
color matrices left over in the product of amplitudes. The phase
space integration measure is given by

d⇧n =

nY

i=1

dDki

(2⇡)D 2⇡�(k2
i )✓(k0

i ) , (8)

3

e+e-: 
DIS: 
pp:

++

��
+�

rection of the path of the Wilson lines appearing in the matrix
elements that define them, e.g.,

Y+†n (x) = P exp

ig
Z
1

0
ds n · As(ns + x)

�

Y�n (x) = P exp
h
ig
Z 0

�1

ds n · As(ns + x)
i
,

(2)

where As = AA
s T A, T A being the generators in the fundamental

representation of SU(N). In Y+n , n is the direction of an outgoing
jet in ee or ep, while in Y�n it is the direction of an incoming
hadron beam in ep or pp. Feynman rules for gluons emitted
from the two Wilson lines in Eq. (2) are the same except for the
sign of i✏ in the eikonal propagators determining the complex
pole prescription. For example, the amplitudes for emission of
a gluon of momentum k from the eikonal lines in Eq. (2) are

A
+
1n = �gµ✏

n · "(k)
n · k + i✏

, A�1n = �gµ✏
n · "(k)

n · k � i✏
, (3)

where "(k) is the polarization vector for an outgoing gluon.
These di↵erences in soft Wilson lines appearing in factorization
theorems for cross sections with incoming or outgoing collinear
particles were studied extensively in [29, 30]. This subtle di↵er-
ence is enough to potentially change the result of perturbative
computations. Ignorance of whether this actually occurs or not
has so far been the roadblock to N3LL accuracy in resumming
DIS and DY event shapes. (Nonperturbatively, the three soft
functions must be assumed to be di↵erent.)

In this paper, we compare all the perturbative amplitudes that
could appear in the computation of the ee, ep, and pp soft func-
tions up toO(↵2

s). The amplitudes themselves are not dependent
on the observable being measured in the final state, so our con-
clusion is fairly generally applicable. We find that nearly all
amplitudes are transparently equal whether the particles origi-
nate from incoming or outgoing Wilson lines. The exception
is a subset of the O(g3) 1-gluon emission amplitudes, namely,
those 1-loop amplitudes containing a triple gluon vertex [(2T )
in Fig. 1], which is part of the computation of the soft gluon cur-
rent at one loop [31] (and computed to two loops in [32]). For
ee and ep these amplitudes are equal, but for pp it has the oppo-
site sign in the imaginary part. These imaginary terms cancel,
however, upon summing all products of amplitudes and their
complex conjugates that contribute to the final soft functions.

Although this result follows immediately from existing re-
sults on the 1-loop soft gluon current, the consequent equality
of the ee, ep, and pp soft functions has not be made clearly
in the literature and has not yet been used to extend resumma-
tion of ep and pp event shapes to N3LL accuracy. (See, how-
ever, preliminary results, including observation about equality
of soft functions, in [33, 34, 35].) It is one of the purposes of
this letter to make this simple, though unnoticed, observation
explicit. The results for the two-loop soft functions for e+e�
event shapes in [14, 15, 16] thus can be immediately used for
ep, pp event shapes as well. The equality of soft functions in
these three di↵erent processes, furthermore, extends to many
other observables besides event shapes.

In Sec. 2 we review the factorization theorems for event
shapes in ee, ep, and pp collisions in which the soft functions

that we study appear. In Sec. 3 we consider all possible am-
plitudes that could contribute to the soft functions at O(↵2

s), in
particular the one-loop real emission amplitude. We observe
that those are equal for ee and ep but complex conjugated for
pp, though their final contributions to the soft functions are
equal. We also consider generalization to soft functions con-
taining Wilson lines for gluon beams/jets and those with more
than two legs. In Sec. 4 we conclude. In the appendices we
summarize the final result for the hemisphere soft function, pre-
viously calculated for e+e�, and provide additional details of
some of our computations.

2. Factorization and soft functions for ee, ep, pp collisions

In this section, we review the contexts in which the three
types of soft functions we consider in this paper appear, for two-
jet event shapes in e+e� collisions, for one-jet event shapes in
DIS, and for 0-jet or beam thrust event shapes in pp collisions.

A generic way to define event shapes in any of these types of
collisions is in terms of N-jettiness [13]:

⌧N =
2

Q2 min
X

i

{qa · pi, qb · pi, q1 · pi, . . . , qN · pi} , (4)

where Q is the hard interaction scale and the qk are lightlike
4-vectors in the directions of any incoming beams a, b and N
outgoing jets. The minimum operator groups all final-state par-
ticles i into regions according to which vector qk it is closest.
An event with small ⌧N ⌧ 1 has N well-collimated jets plus
initial-state radiation (ISR) in the beam directions.

Dijet events in e+e� collisions can be probed using global
observables called event shapes [36], such as thrust ⌧ = 1 � T
[7, 37], corresponding to ⌧ = ⌧2 in Eq. (4) with no qa,b, and
q1,2 = (Q/2)(1,±t̂), where Q is the center-of-mass energy of the
collision and t̂ is the thrust axis, the unit 3-vector that minimizes
the value of ⌧. Other event shapes can be defined by weighting
final-state particles in the two hemispheres determined by t̂ dif-
ferently, such as hemisphere masses [38, 39, 40], broadening
[41], and angularities [42]. Event shapes relative to the broad-
ening axis were defined in [43], and the C-parameter does not
refer to a particular axis at all [44, 45].

Event shapes can also be considered in DIS, e(k) + p(P) !
X(pX)+ e(k0), such as the 1-jettiness ⌧1, defined by Eq. (4) with
one beam direction qa and one jet direction q1. There are many
di↵erent ways to choose these in terms of the DIS kinematic
variables; several were considered in [8, 9, 46]. One, called
⌧b

1 in [9], corresponds to the DIS thrust ⌧Q defined in [10, 36],
with the choices qa = xP and q1 = q + xP, where q = k � k0,
x = Q2/(2P ·q), and Q2 = �q2. In the Breit frame this choice
divides the final state into two back-to-back hemispheres.

Finally in pp collisions, the observables beam thrust [11, 12]
or 0-jettiness ⌧0 [13] measure the collimation of hadronic final-
state particles in pp collisions along the beam directions them-
selves. They can be used, e.g., to veto jets in the central re-
gion for Drell-Yan processes pp ! `+`�X, which plays an
important role in reducing QCD backgrounds in searches for
Higgs or new physics particles. Beam thrust is defined with

2

See
2 = Sep

2 = Spp
2 O(↵2

s)to at least
D. Kang, Labun, CL (2015); 
Boughezal, Liu, Petriello (2015)



“energy flow” operator

Nonperturbative corrections
• In general, soft function expressed as convolution of perturbative part 

and nonperturbative shape function:

S(kS , µ) =
Z

dl SPT(kS � l, µ)SNP(l)

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

k HGeVL

S N
PHk
L

N=0, l = 0.6, D = 50 MeV

• For large enough            , leading effect is a shift:τ (kS)
observable dependent,  
calculable coefficient

universal nonperturbative parameter

ce

hei = heiPT + ce
⌦1

Q ⌦1

• Rigorous proof (and field theory definition of       ) from factorization theorem and boost invariance of soft radiation:

soft radiation sees only direction, not energy, of original collinear partons, invariant to boosts along z

⌦1

⌦1 =
1

NC
Trh0|Y †

n̄Y
†
nET (⌘)YnY n̄|0i



Evolution and resummation

• Easier to discuss in terms of Laplace transforms  
(or Fourier transforms to position space)

• Turns factorization theorem into a simple product:

• RGE obeyed by Laplace-space jet and soft functions:

�̃(⌫) =

Z 1

0
d⌧ e�⌫⌧�(⌧)

σ̃(ν) = H(Q2, μ)J̃(Q2/ν, μ)B̃(Q2/ν, x, μ)S̃(Q/ν, μ)

μ
d

dμ
F̃(Qj /ν, μ) = γF(Qj /ν, μ)F̃(Qj /ν, μ)

Q Full QCD

soft + collinear EFT
Q
�
�

soft EFT
Q�

H ⇠ 1 + �n
s lnm

µ

Q

J ⇠ 1 + �n
s lnm

µ

Q
p
⇥

S ⇠ 1 + �n
s lnm

µ

Q⇥

evolution with  
calculable

µ

evolve each function in factorization theorem 
from scale where logs are minimized

(B)



Scale profiles
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Scale profiles

For DIS, these regions depend on x, e.g.:



DIS thrust cross sections
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Resummed to N3LL accuracy:

include a nonperturbative shape function:
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can be related to other 
DIS event shapes

 
or even pp to 1 jet 

observables
Stewart, Tackmann, 
Waalewijn (2014)

D. Kang, CL, 
Stewart (2013)

D. Kang, CL, Stewart  
(2015 and in progress)
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DIS thrust cross sections
Tail region, fixed x, low to high Q:



DIS thrust cross sections
Tail region, fixed Q, low to high x:
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DIS thrust cross sections
Full distribution:
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Experimental sensitivity and strong coupling

Current theoretical uncertainty 
vs. HERA or EIC coverage:

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-5

0

5

τ

δ
(d
σ
/d

a τ
)
[%

]

Q=
x

VeG05
=0.05

δα s=1% δα s=3% N3LL δPDF

Current theoretical uncertainty on the order of 1% 
sensitivity to       and PDF uncertainties:αs

D. Kang, CL, Stewart  
(2015 and in progress)



Outlook

• N3LL resummed predictions for DIS thrust to be published soon.

• Event shapes in DIS promising candidates for precision determination of 
strong coupling, PDFs, and hadronization corrections

• Results from HERA or an EIC may shed light on “low” value of LEP event 
shape determinations of strong coupling


