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FIG. 4. .

and there is at least one particle kf That hadronizes. The kX momentum labels the total momentum of all other
unobserved partons. We are interested in the kinematics of the ki + q ! kf + kX subprocess and how it matches the
overall P + q ! PB+X subprocess under very general assumptions. Specific realizations of the subprocess are shown
in Fig. 4. As far as the partonic subprocess is concerned, it is only the relative transverse momentum of ki and kf

that matters. So, without loss of generality, we may analyze the subprocess in the Breit frame of the target parton ki

and write
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The b superscript indicates the partonic Breit frame. We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (68)

In the hadron frame, Eq. (31) gives

kf,H,T = �kT + Power Suppressed , (69)

so �kT is good for characterizing an intrinsic relative transverse momentum; in Eq. (67) intrinsic transverse momentum
is �kT when qT = 0. When �kT = 0, the partons are, up to power suppressed corrections, exactly aligned with the
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g(x1) = b g(x0) = b+ a(x0 � x1) (617)

g(x1) = f(x1) = f1 , g(x0) = f(x0) = f0 g(x2) = 0 (618)
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z = .25, ⇣,= .3, ⇠ = .2, m = m⇡ (624)
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k = kf � q (626)
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The 2 ! 1 partonic kinematics only apply if k
2
/Q

2 ⇡ 0, so define one more ratio

Transverse Hardness Ratio = R2 ⌘ |k2|
Q2

. (91)

R2 is small for 2 ! 1 partonic kinematics. From Eq. (78),
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ẑNQ2
+

2qT · �kT

Q2

���� ⇡ (1 � ẑ) + ẑ
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Note that this suggests qT from Eq. (29) as the most useful transverse momentum for quantifying transverse momentum
hardness relative to Q; if q

2

T
/Q

2 ⇠ 1, then R2 ⇠ 1 for both large and small ẑ while if q
2

T
/Q

2 ⌧ 1 and ⇠ ⇠ zN (as in
the current fragmentation region with TMDs) then R2 ⌧ 1.

If the SIDIS region corresponds to 2 ! 2 hard partonic kinematics, then R2 must be large (⇠ 1). However, then the
ratio k

2

X
/Q

2 must be small since there is only one unobserved parton, and its invariant mass must be small relative
to hard scales to qualify as a single massless parton. So define one more ratio,

R3 ⌘ |k2

X
|

Q2
. (93)

Large R2, but small R3, corresponds to 2 ! 2 parton kinematics. Large R2 and large R3 corresponds to partonic
scattering with three or more final state partons, such as Fig. 4(c).

To see that the size of Eq. (92) reflects the importance of transverse momentum, note that Feynman graphs
corresponding to the inside of the box in Fig. 4 contain propagator denominators of the form:

1

k2 + O (m2)
,

1

k2 + O (Q2)
. (94)

where the denominators with O
�
Q

2
�

are corrections to the virtual photon vertex or propagators from the emission of
wide-angle kX partons. Note also that k ·q ⇠ q ·p = O

�
Q

2
�
. The approximations that can made on these denominators

are representative of the approximations needed in derivations of factorization. If |k2| ⇠ Q
2, the O

�
m

2
�

terms in
the denominators are negligible so that the region in the box can be calculated in perturbative QCD using both Q

2

and k
2 as equally good hard scales. In this case, Fig. 4(b) becomes the relevant picture. However, if |k2| ⌧ Q

2, the
O

�
m

2
�

terms in the first of the denominators in Eq. (94) must be kept. Then, a |k2|/Q
2 ⌧ 1 approximation in the

second denominator can be used, and it is this type of approximation that leads to TMD factorization. This is the
handbag topology in Fig. 4(a). Note that the k line has become the target parton. Using Eq. (78) and Eq. (83) for
k

2 immediately gives Eq. (92).
The lowest order (O (↵s)) contribution to large transverse momentum is the partonic process is 2 ! 2 process.

Again, all partons are massless and on-shell, and the picture is Fig. 4(b). Since there is only one unobserved massless
parton in this region, it correspond to k

2

X = 0. To see that it is the ratio in Eq. (93) that must be small in this region,
consider how the size of k

2

X a↵ects the denominators in Eq. (94) at fixed ẑ, x̂, large qT, and Q
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To get a simple form, we have already assumed here that k
2

i
and k

2

f
are negligible. In propagators, therefore, the size

of k
2 is independent of k

2

X at large k
2

T
if k

2

X/Q
2 ⌧ 1 and x̂ is not too close to 1. Otherwise, if Eq. (93) becomes large,

the 2 ! 3 or greater cases are likely the more applicable partonic subprocesses. In pQCD this means that O
�
↵

2

s

�
or

higher calculations are needed.
Di↵erent combinations of sizes for the above ratios correspond to other regions. For example, the target fragmen-

tation region corresponds to small R0, small R2, but large R1.
All of the above approximations are intertwined in potentially complicated ways, especially when Q is not especially

large and mass e↵ects may be non-negligible. This can make even crude, order-of-magnitude estimates of their e↵ects
nontrivial, although the influence of model assumptions should diminish rapidly at large Q.

A choice concerning the acceptable ranges of R0, R1, R2, and R3 translates into a choice about the range of possible
reasonable values for all the components of ki and kf . In practice, this might be more conveniently stated in reverse.
That is, one starts with general expectations regarding the sizes of the partonic components of ki and kf based on
models and/or theoretical considerations. The question then becomes whether the resulting R0, R1, R2, and R3 are
consistent with a particular region of partonic kinematics (hard, current region, large transverse momentum, etc).
Our aim is not to address any particular theoretical framework for estimating intrinsic properties of partons, or to
estimate exactly acceptable ranges for the above ratios, but only to demonstrate how, once these choices are made,
they fix the relationship between external kinematics and the region of partonic kinematics.
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• High sensitivity to intrinsic 
properties at lower Q

• Small errors at 
larger Q

Catalogue of Regions: Boglione et al
(To appear in JHEP)

What is the relevant description?
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uū+ dd̄p
2

uū� dd̄p
2

(505)
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and there is at least one particle kf That hadronizes. The kX momentum labels the total momentum of all other
unobserved partons. We are interested in the kinematics of the ki + q ! kf + kX subprocess and how it matches the
overall P + q ! PB+X subprocess under very general assumptions. Specific realizations of the subprocess are shown
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The b superscript indicates the partonic Breit frame. We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (68)

In the hadron frame, Eq. (31) gives

kf,H,T = �kT + Power Suppressed , (69)

so �kT is good for characterizing an intrinsic relative transverse momentum; in Eq. (67) intrinsic transverse momentum
is �kT when qT = 0. When �kT = 0, the partons are, up to power suppressed corrections, exactly aligned with the
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and there is at least one particle kf That hadronizes. The kX momentum labels the total momentum of all other
unobserved partons. We are interested in the kinematics of the ki + q ! kf + kX subprocess and how it matches the
overall P + q ! PB+X subprocess under very general assumptions. Specific realizations of the subprocess are shown
in Fig. 4. As far as the partonic subprocess is concerned, it is only the relative transverse momentum of ki and kf

that matters. So, without loss of generality, we may analyze the subprocess in the Breit frame of the target parton ki

and write

k
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The b superscript indicates the partonic Breit frame. We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (68)

In the hadron frame, Eq. (31) gives

kf,H,T = �kT + Power Suppressed , (69)

so �kT is good for characterizing an intrinsic relative transverse momentum; in Eq. (67) intrinsic transverse momentum
is �kT when qT = 0. When �kT = 0, the partons are, up to power suppressed corrections, exactly aligned with the

PB
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The 2 ! 1 partonic kinematics only apply if k
2
/Q

2 ⇡ 0, so define one more ratio

Transverse Hardness Ratio = R2 ⌘ |k2|
Q2

. (91)

R2 is small for 2 ! 1 partonic kinematics. From Eq. (78),

R2 =
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q
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ẑNQ2
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2qT · �kT
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���� ⇡ (1 � ẑ) + ẑ
q
2

T

Q2
. (92)

Note that this suggests qT from Eq. (29) as the most useful transverse momentum for quantifying transverse momentum
hardness relative to Q; if q

2

T
/Q

2 ⇠ 1, then R2 ⇠ 1 for both large and small ẑ while if q
2

T
/Q

2 ⌧ 1 and ⇠ ⇠ zN (as in
the current fragmentation region with TMDs) then R2 ⌧ 1.

If the SIDIS region corresponds to 2 ! 2 hard partonic kinematics, then R2 must be large (⇠ 1). However, then the
ratio k

2

X
/Q

2 must be small since there is only one unobserved parton, and its invariant mass must be small relative
to hard scales to qualify as a single massless parton. So define one more ratio,

R3 ⌘ |k2

X
|

Q2
. (93)

Large R2, but small R3, corresponds to 2 ! 2 parton kinematics. Large R2 and large R3 corresponds to partonic
scattering with three or more final state partons, such as Fig. 4(c).

To see that the size of Eq. (92) reflects the importance of transverse momentum, note that Feynman graphs
corresponding to the inside of the box in Fig. 4 contain propagator denominators of the form:

1

k2 + O (m2)
,

1

k2 + O (Q2)
. (94)

where the denominators with O
�
Q

2
�

are corrections to the virtual photon vertex or propagators from the emission of
wide-angle kX partons. Note also that k ·q ⇠ q ·p = O

�
Q

2
�
. The approximations that can made on these denominators

are representative of the approximations needed in derivations of factorization. If |k2| ⇠ Q
2, the O

�
m

2
�

terms in
the denominators are negligible so that the region in the box can be calculated in perturbative QCD using both Q

2

and k
2 as equally good hard scales. In this case, Fig. 4(b) becomes the relevant picture. However, if |k2| ⌧ Q

2, the
O

�
m

2
�

terms in the first of the denominators in Eq. (94) must be kept. Then, a |k2|/Q
2 ⌧ 1 approximation in the

second denominator can be used, and it is this type of approximation that leads to TMD factorization. This is the
handbag topology in Fig. 4(a). Note that the k line has become the target parton. Using Eq. (78) and Eq. (83) for
k

2 immediately gives Eq. (92).
The lowest order (O (↵s)) contribution to large transverse momentum is the partonic process is 2 ! 2 process.

Again, all partons are massless and on-shell, and the picture is Fig. 4(b). Since there is only one unobserved massless
parton in this region, it correspond to k

2

X = 0. To see that it is the ratio in Eq. (93) that must be small in this region,
consider how the size of k

2

X a↵ects the denominators in Eq. (94) at fixed ẑ, x̂, large qT, and Q
2 by expressing |k2

/Q
2|

in terms of k
2

X instead of ẑ:
����
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To get a simple form, we have already assumed here that k
2

i
and k

2

f
are negligible. In propagators, therefore, the size

of k
2 is independent of k

2

X at large k
2

T
if k

2

X/Q
2 ⌧ 1 and x̂ is not too close to 1. Otherwise, if Eq. (93) becomes large,

the 2 ! 3 or greater cases are likely the more applicable partonic subprocesses. In pQCD this means that O
�
↵

2

s

�
or

higher calculations are needed.
Di↵erent combinations of sizes for the above ratios correspond to other regions. For example, the target fragmen-

tation region corresponds to small R0, small R2, but large R1.
All of the above approximations are intertwined in potentially complicated ways, especially when Q is not especially

large and mass e↵ects may be non-negligible. This can make even crude, order-of-magnitude estimates of their e↵ects
nontrivial, although the influence of model assumptions should diminish rapidly at large Q.

A choice concerning the acceptable ranges of R0, R1, R2, and R3 translates into a choice about the range of possible
reasonable values for all the components of ki and kf . In practice, this might be more conveniently stated in reverse.
That is, one starts with general expectations regarding the sizes of the partonic components of ki and kf based on
models and/or theoretical considerations. The question then becomes whether the resulting R0, R1, R2, and R3 are
consistent with a particular region of partonic kinematics (hard, current region, large transverse momentum, etc).
Our aim is not to address any particular theoretical framework for estimating intrinsic properties of partons, or to
estimate exactly acceptable ranges for the above ratios, but only to demonstrate how, once these choices are made,
they fix the relationship between external kinematics and the region of partonic kinematics.
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Fig. 1. Kinematic coverage of COMPASS (160 GeV muon beam), HERMES (27 GeV electron beam) and JLab (11 GeV electron
beam) showing the complementariness among the experiments. Left and right plots shows the detailed coverage in log-log and
linear-log scales.

violate T -invariance due to the interaction phase) and
exhibit a peculiar process dependence: a sign change is ex-
pected moving from SIDIS to Drell-Yan processes, whose
verification is one of the most urgent goals of the present
experimental activity. The Sivers and Boer-Mulders func-
tions describe unpolarised quarks in a transversely po-
larised nucleon and transversely polarised quarks in a un-
polarised nucleon, respectively. The most simple mecha-
nism that can lead to the Boer-Mulders (Sivers) function
is a correlation between the spin of the quarks (nucleon)
and the quark orbital angular momentum. In combination
with a final state interaction that is on average attractive,
such correlations manifest as azimuthal asymmetries of
the produced hadron distribution. Convincing evidences
have been found of the existence of the Sivers mechanism
in SIDIS reactions, see sect. 3.4. The Boer-Mulders effect
has resulted more difficult to isolate, as the related SIDIS
observables get sizable sub-leading contributions of pure
kinematic origin, see sect. 3.5.

An analogous of table 1 exists for the fragmentation
functions. As the polarisation in the final state is not ac-
counted for in this work, only two transverse-momentum–
dependent fragmentation functions (TMD-FFs) are con-
sidered in the following: the unpolarised D1(z, p⊥) and
the Collins H⊥

1 (z, p⊥) fragmentation function, where z is
the energy fraction carried by the final state hadron and
p⊥ is the transverse momentum acquired by the observed
hadron with respect the fragmenting quark. The Collins
function acts as a polarimeter being sensitive to the cor-
relation between the transverse momentum gained dur-
ing fragmentation and the transverse polarisation of the
fragmenting quark [23] and allows to access the chirally
odd distribution functions. The measurements indicate a
peculiar behaviour of the Collins function, with similar
magnitude but opposite sign for favoured (the fragment-
ing quark is a valence quark of the produced hadron) and
unfavoured fragmentation, see sect. 3.3.

TMDs can be accessed in SIDIS through measure-
ments of specific azimuthal angle dependences of the cross-
section. Observables sensitive to those TMDs were un-

der intensive experimental studies at different Laborato-
ries worldwide. Measurements using electro-production of
hadrons and focused on TMD studies have been performed
by HERMES at HERA, COMPASS at CERN and halls
A,B and C at JLab. After the first exploratory phase hold-
ing for about a decade, it is now the time of transition
to a new precision phase for the exploration of the nu-
cleon 3D structure. In particular, precision measurements
of spin and azimuthal asymmetries in pion and kaon SIDIS
production off unpolarised, longitudinally polarised and
transversely polarised p, d and 3He targets would allow
to extract the spin and flavour dependences of transverse-
momentum distributions of quarks. The TMDs non-trivial
universality properties would be proven by comparing
SIDIS results, i.e. on Sivers function, with measurements
in Drell-Yan experiments at COMPASS and W -boson pro-
duction at RHIC. Combination of measurements in the
extended range of momentum transfer Q2, covered by the
existing and upcoming facilities, would allow studies of
Q2-dependences of TMDs, for example for the Sivers func-
tion, predicted to have very non-trivial evolution prop-
erties [24, 25], and the disentanglement of the possible
sub-leading contributions. The overlap of kinematic cover-
age of COMPASS, HERMES and JLab (see fig. 1) would
allow studies of Q2-dependence in the range of Bjorken
x ∼ 0.1–0.2, where the effects related to orbital motion of
quarks are expected to be significant. The coverage in x
and Q2 would be ultimately extended with the realization
of an Electron-Ion Collider (EIC) [26], a facility among
the recommendations of the US Nuclear Science Advisory
Committee 2015 Long Range Plan [27].

3 Measuring spin-azimuthal asymmetries in
SIDIS

In the one-photon exchange approximation valid at the
fixed-target experiments, the SIDIS cross-section:

see eq. (1) on top of the next page

-H. Avakian, A. Bressan, and M. 
Contalbrigo, “Experimental results on 
TMDs” (2016) 
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• Hadron masses

• Power corrections

3

following kinematical variables:

Q
2 = �q

2 = �(l � l
0)2, xBj =

Q
2

2P · q , xN = � q
+

P+
=

2xBj

1 +
q

1 +
4x2

BjM
2

Q2

, (10)

y =
P · q
P · l , zh =

P · PB

P · q = 2xBj

P · PB

Q2
, s = (l + P )2, (11)

W
2 = (q + P )2 , xh =

q · PB

P · q zN =
P

�
B

q�
. (12)

In the above light-cone ratios that define xN and zN, momentum components q
±, P

+ and P
�
B

are defined in a
photon frame, where the incoming proton is in the positive z-direction with no transverse momentum and the virtual
photon is the the negative z-direction with no transverse momentum. (See the discussion of frames below.) xN is the
kinematical variable usually called Nachtmann-x. It is often labeled by a ⇠, but ⇠ also is a conventional label for a
partonic momentum fraction, so we use xN instead, with the labels on xN and xBj distinguishing between Bjorken
and Nachtmann x-variables. For descriptions of fragmentation, the light-cone fraction zN is the analogue of xN, and
the N subscript is meant to emphasize the analogy. The xh variable is useful in descriptions of target fragmentation.

The deep inelastic limit is m/Q ! 1 with fixed xN and zN. The m symbol will always refer to a generic mass scale
considered to be small relative to Q, such as a hadron mass or ⇤QCD. The kinematical variables obey

Q
2 = xBjy(s�M

2 �m
2

l ) ⇡ xBjys . (13)

The “⇡” symbol will always mean “dropping m/Q power-suppressed corrections.”

IV. REFERENCE FRAMES

• Photon frame:

In a photon frame, the virtual photon and the initial proton both have zero transverse momentum, while the final
state produce hadron acquires non-zero transverse momentum:

q� =

✓
�xNP

+

� ,
Q

2

2xNP
+
�
,0T

◆
, (14)

P� =

✓
P

+

� ,
M

2

2P+
�
,0T

◆
, (15)

P
B,� =

 
P2

B,�,T +M
2

B

2P�
B,�

, P
�
B,� ,PB,�,T

!
. (16)

The � subscript specifies the photon frame, following the notation of Eq. (7). In the photon frame

P
�
B,� =

zhQ
2

4xBjP
+
�

0

B@1±

vuut
1�

4x2

Bj
M2

⇣
P2

B,�,T +M2

B

⌘

z2
h
Q4

1

CA ⇡ zhQ
2

2xBjP
+
�

, (17)

where the approximation symbol shows the limit of zero hadron masses for the solution corresponding to the current
fragmentation region. Note that Eq. (14) fixes xN to be defined by Eq. (10).

The angles  and � are the azimuthal angles of the final state lepton and produced hadron respectively in a photon
frame.
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� (1� ẑN)k2f

Q2ẑN
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Large and Small Transverse Momentum



• TMD pdfs in physical processes
– Small 𝑞%/Q expansion

• Need to separate small and large 𝑞%/Q 

• Works best if there is a region of overlap 
between large and small 𝑞%/Q methods:

𝑑𝜎
𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞%

= 𝐻 𝑄 𝑓 𝑥, 𝑘.% ⊗ 𝑑 𝑧, 𝑧 𝑘"% + 𝑌 𝑥, 𝑧, 𝑞% + P. S. C.

Small 𝑞%/Q 
approximation

(TMD factorization)

𝑞% ~ 𝑄
correction

(collinear factorization)

𝑌 𝑥, 𝑧, 𝑞% = Large ⁄𝑞% 𝑄 Approx. − Small and Large ⁄𝑞% 𝑄 Approx.

Large and Small Transverse Momentum
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� (1� ẑN)k2f

Q2ẑN
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Why Large Transverse Momentum?



Why Large Transverse Momentum?

• Example: Shapes of TMD distributions:
– Sea versus valence? 
– Different flavors?

Different tails can produce 
very different 𝑘%"

𝑘%

𝑁𝑃
𝑇𝑀𝐷
𝑃𝐷𝐹



Why Large Transverse Momentum?

• What is the mechanism for hadron production 
when hard scales are not that hard?
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FIG. 4. Leading order Feynman diagrams for the scattering
amplitude of partonic subprocess: �⇤ + q ! [qq̄0()] + q0.

quark and the antiquark, and tAab is the generator of the
SU(Nc) color group in the fundamental representation
with A = 1, 2, ..., N2

c � 1 and Nc = 3 in QCD. In this
paper, we use the same color projection operators for the
hard part as done in Refs. [23, 24],

C̃
[1]
ba,dc = �ba�dc, (8)

C̃
[8]
ba,dc =

X

A

p
2tAba

p
2tAdc, (9)

where d, c are color indices for the quark-antiquark pair in
the complex-conjugate of the scattering amplitudes. The
corresponding color projection operators for the quark-
antiquark FFs in Fig. 3 are [23, 24]

C
[1]
ab,cd =

1

N2
c

�ab�cd, (10)

C
[8]
ab,cd =

1

N2
c � 1

X

A

p
2tAab

p
2tAcd. (11)

They satisfy the normalization condition,

X

abcd

C̃
I
ba,dcC

J
ab,cd = �IJ , (12)

where I, J = [1], [8].
The spin projection operators for the four spin states

of the quark-antiquark pair can be given by (� · p)ij ,
(� · p �5)ij , and (� · p �↵

?)ij with ↵ = 1, 2, or their linear
combinations. They could be referred to as the vector
(v), axial-vector (a), and tensor (t) projections. Follow-
ing Refs. [23, 24], we choose the spin projection operators
for the hard part as

P̃
(v)(p)ji,lk = (� · p)ji(� · p)lk, (13)

P̃
(a)(p)ji,lk = (� · p �5)ji(� · p �5)lk, (14)

P̃
(t)(p)ji,lk =

X

↵=1,2

(� · p �↵
?)ji(� · p �↵

?)lk, (15)

and corresponding spin projection operators for the
quark-antiquark FFs to be

P
(v)(p)ij,kl =

1

4p · n
(� · n)ij

1

4p · n
(� · n)kl, (16)

P
(a)(p)ij,kl =

1

4p · n
(� · n �5)ij

1

4p · n
(� · n �5)kl, (17)

P
(t)(p)ij,kl =

1

2

X

↵=1,2

1

4p · n
(� · n �↵

?)ij
1

4p · n
(� · n �↵

?)kl,

(18)

where n is a null vector with n2 = 0, defined to be con-
jugated to the momentum of the quark-antiquark pair
p, such that p · n is the only nonvanishing component of
pµ if p2 = 0. As required, the spin projection operators
satisfy the normalization condition,

X

ijkl

P̃
(s)
ji,lkP

(s0)
ij,kl = �ss

0
, (19)

where s, s0 = v, a, t.

The spin state of a virtual photon of momentum q can
be either transversely polarized with the polarization vec-
tors ✏µ± or longitudinally polarized with the polarization
vector ✏µL. The transverse spin polarization tensor is de-
fined as

dµ⌫(q) =
X

�=±
✏⇤µ� ✏⌫� = �gµ⌫ + vµv̄⌫ + v̄µv⌫ , (20)

and the longitudinal spin polarization tensor is given by

Kµ⌫(q) = ✏⇤µL ✏⌫L =
1

�q2

⇥
(q · v̄)2vµv⌫ + (q · v)2v̄µv̄⌫

⇤

+
1

2
(vµv̄⌫ + v̄µv⌫), (21)

where v and v̄ are two null vectors introduced to pick
the “+” and “�” light-cone components of the photon
momentum q with v2 = v̄2 = 0, v · v̄ = 1, and qµ =
(q · v)v̄µ + (q · v̄)vµ.

The color factors for all the squares of diagrams in
Fig. 4 are the same for each color projection:

C [1] =
1

Nc

X

AB

Tr[tAtAtBtB ] =
(N2

c � 1)2

4N2
c

, (22)

C [8] =
1

Nc

X

ABC

2Tr[tAtCtAtBtCtB ] =
N2

c � 1

4N3
c

, (23)

where the factor 1/Nc is from the average of initial state
quark colors. Thus we can factor it out from amplitude
squares of the diagrams in Fig. 4.

T. Liu, J.-W. Qiu (2019)
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⌦ � u d ū � d̄ (504)

uū+ dd̄p
2
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Why Large Transverse Momentum?

• Interpretation of integrals

• In generalized parton model: 

L𝑑"𝐤%𝑓(𝑥, 𝑘%) = 𝑓 𝑥 , L𝑑"𝐤%
𝑘%"

2𝑀" 𝑓.Q(𝑥, 𝑘%) = 𝑓.Q
(.) 𝑥 , ⋮

𝑑𝜎
𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞%

= 𝐻 𝑄 𝑓 𝑥, 𝑘.% ⊗ 𝑑 𝑧, 𝑧 𝑘"% + 𝑌 𝑥, 𝑧, 𝑞% + P. S. C.

= 𝐻 𝑄 L𝑑"𝐤.% L𝑑"𝐤"% 𝑓 𝑥, 𝑘.% 𝑑(𝑧, 𝑘"%)𝛿 " (𝐤"% − 𝐤.% − 𝐪%)

Assume all contributions to transverse momentum dependence are intrinsic



Why Large Transverse Momentum?

• Integrated cross section in generalized parton
model

• Full integral

L𝑑"𝒒%
𝑑𝜎

𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞%
= 𝐻 𝑄 L𝑑"𝐤.% 𝑓 𝑥, 𝑘.% L𝑑"𝐤"% 𝑑(𝑧, 𝑧 𝑘"%)

= 𝐻 𝑄 𝑓 𝑥 𝑑(𝑧)

L𝑑"𝒒%
𝑑𝜎

𝑑𝑥 𝑑𝑧 𝑑𝑄 𝑑𝑞%
= L𝑑"𝒒% 𝐻 𝑄 𝑓 𝑥, 𝑘.% ⊗ 𝑑 𝑧, 𝑧 𝑘"% + 𝑌 𝑥, 𝑧, 𝑞%

Cutoff dependence cancels between terms



Simplest Processes with Transverse 
Momentum

• Semi-inclusive DIS (JLab, EIC,…)

• Drell-Yan 

• e+e- annihilation (Belle) 



SIDIS

• Leading order contribution to large transverse 
momentum production

(R-A) (R-B) (R-C) (R-D)

(R-E) (R-F) (R-G) (R-H)

(R-I) (R-J) (R-K)

(V-A) (V-B) (V-C) (V-D)

(V-E) (V-F)

FIG. 2. Structure of graphs needed at order ↵s(Q)2. The last six correspond to virtual corrections
to ↵s(Q) order graphs.
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SIDIS
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Figure 6. d�NLO, d�ASY , WNLL and the sum WNLL + Y (see Eq. (3.3)), corresponding to the
three di↵erent SIDIS kinematical configurations defined in Fig. 1. Here bmax = 1.0 GeV�1, g1 = 0.3
GeV2, g1f = 0.1 GeV2, g2 = 0 GeV2.

fixes the bT scale of the transition between perturbative and non-perturbative regimes,

the distributions obtained from growing values of bmax die faster in bT , because the non-

perturbative contribution sets in at larger and larger values of bT .

3.3 Y term matching

It should now be clear that a successful matching heavily depends on the subtle inter-

play between perturbative and non-perturbative contributions to the total cross section,

and that finding a kinematical range in which the resummed cross section W matches its

asymptotic counterpart d�ASY , in the region qT ⇠ Q, cannot be taken for granted.

In Fig. 6 we show, in the three SIDIS configurations considered above, the NLO cross

section d�NLO (solid, red line), the asymptotic cross section d�ASY (dashed, green line)

and the NLL resummed cross section WNLL (dot-dashed, cyan line). The dotted blue line

represents the sum (WNLL + Y ), according to Eq. (2.19).

Clearly, in none of the kinematical configurations considered, WNLL matches d�ASY ,

they both change sign at very di↵erent values of qT . Moreover, the Y factor can be

very large compared to WNLL. Consequently, the total cross section WNLL + Y (dot-

ted, blue line) never matches the fixed order cross section d�NLO (solid, red line). At

low and intermediate energies, the main source of the matching failure is represented by

the non-perturbative contribution to the Sudakov factor. As we showed in Section 3.1,

the resummed term W of the cross section is totally dominated by the non-perturbative

input, even at large qT . Notice that, in the kinematical configurations of the COMPASS

experiment, the matching cannot be achieved simply by adding higher order corrections

to the perturbative calculation of the Y term, as proposed in Ref. [8], as WNLL is heavily

dependent on the non-perturbative input.

Interestingly, the cross section does not match the NLO result even at the highest

energies considered,
p
s = 1 TeV and Q2 = 5000 GeV2: further comments will be addressed

in the following subsection.
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Boglione et al, JHEP 1502 (2015) 095:

• Standard Y-correction diverges for both 𝑞% → 0 and 𝑞% → ∞
• For moderate Q, 𝑚 ≪ 𝑞% << Q region gets squeezed
• There are details in the treatment of both large and small qT that 

can improve the situation
• How is the matching in practice? 

• Directly implement Y-term

Collins et al, Phys.Rev. D (2016)



SIDIS: Leading Order

J. O. Gonzalez-Hernandez, TR, N. Sato, and B. Wang Phys. Rev. D 98, 114005 

The question then, however, is whether fixed order
SIDIS calculations continue to be in reasonable agreement
with measurements at more moderate x and z and at large
qT, where the expectation is that agreement should
improve, at least with the inclusion of Oðα2sÞ corrections.

Figure 4 shows that this is not the case, however. The order
OðαsÞ and Oðα2sÞ curves are obtained with a computer
calculation analogous to that used in Ref. [24] to generate
Fig. 3, but modified to be consistent with the kinematics of
the corresponding experimental data. (We have verified that

FIG. 4. Calculation of OðαsÞ and Oðα2sÞ transversely differential multiplicity using code from Ref. [24], shown as the curves labeled
DDS. The bar at the bottom marks the region where qT > Q. The PDF set used is CJNLO [33], and the FFs are from Ref. [34]. Scale
dependence is estimated using μ ¼ ððζQQÞ2 þ ðζqTqTÞ

2Þ1=2 where the band is constructed point by point in qT by taking the minimum
and maximum of the cross section evaluated across the grid ζQ × ζqT ¼ ½1=2; 1; 3=2; 2&× ½0; 1=2; 1; 3=2; 2& except ζQ ¼ ζqT ¼ 0. The
red band is generated with ζQ ¼ 1 and ζqT ¼ 0. A lower bound of 1 GeV is placed on μ when Q=2 would be less than 1 GeV.

FIG. 5. Ratio of data to theory for several near-valence region panels in Fig. 4. The grey bar at the bottom is at 1 on the vertical axis and
marks the region where qT > Q.

GONZALEZ-HERNANDEZ, ROGERS, SATO, and WANG PHYS. REV. D 98, 114005 (2018)

114005-6
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(R-I) (R-J) (R-K)

(V-A) (V-B) (V-C) (V-D)

(V-E) (V-F)

FIG. 2. Structure of graphs needed at order ↵s(Q)2. The last six correspond to virtual corrections
to ↵s(Q) order graphs.

10

The question then, however, is whether fixed order
SIDIS calculations continue to be in reasonable agreement
with measurements at more moderate x and z and at large
qT, where the expectation is that agreement should
improve, at least with the inclusion of Oðα2sÞ corrections.

Figure 4 shows that this is not the case, however. The order
OðαsÞ and Oðα2sÞ curves are obtained with a computer
calculation analogous to that used in Ref. [24] to generate
Fig. 3, but modified to be consistent with the kinematics of
the corresponding experimental data. (We have verified that

FIG. 4. Calculation of OðαsÞ and Oðα2sÞ transversely differential multiplicity using code from Ref. [24], shown as the curves labeled
DDS. The bar at the bottom marks the region where qT > Q. The PDF set used is CJNLO [33], and the FFs are from Ref. [34]. Scale
dependence is estimated using μ ¼ ððζQQÞ2 þ ðζqTqTÞ

2Þ1=2 where the band is constructed point by point in qT by taking the minimum
and maximum of the cross section evaluated across the grid ζQ × ζqT ¼ ½1=2; 1; 3=2; 2&× ½0; 1=2; 1; 3=2; 2& except ζQ ¼ ζqT ¼ 0. The
red band is generated with ζQ ¼ 1 and ζqT ¼ 0. A lower bound of 1 GeV is placed on μ when Q=2 would be less than 1 GeV.

FIG. 5. Ratio of data to theory for several near-valence region panels in Fig. 4. The grey bar at the bottom is at 1 on the vertical axis and
marks the region where qT > Q.

GONZALEZ-HERNANDEZ, ROGERS, SATO, and WANG PHYS. REV. D 98, 114005 (2018)

114005-6

DSS fragmentation funcs.
CJ pdfs

Hard part 
at large qT, 
lowest order

Data from COMPASS:
(Phys.Rev. D 97, 032006 (2018))
Similar results with HERMES data



SIDIS

A. Daleo, D. de Florian, and R. Sassot, Phys. Rev. D 71, 034013 (2005)

• Large corrections from NLO

approximation, therefore, the ratio k2X=Q
2 (Fig. 1(a)) must

be small enough that it does not affect the k2 terms in
Eq. (6) and Eq. (7). Considering k2=Q2 but now in terms of
k2X instead,
!!!!
k2

Q2

!!!! ¼
1

1 − x̂þ x̂q2T=Q
2

"
q2T
Q2

þ x̂
k2X
Q2

#
1 − q2T

Q2

$%
: ð11Þ

So the k2 terms in Eq. (6) and Eq. (7) are nearly
independent of kX if k2X=Q

2 ≪ 1. Otherwise, higher orders
in αs are necessary to generate the nonzero k2X . In terms of
x̂, ẑ, and Q2,

k2X
Q2

¼ ð1 − x̂Þð1 − ẑÞ
x̂

− ẑ
q2T
Q2

: ð12Þ

In practice, typical x̂ and ẑ are largely determined by the
distributions in longitudinal momentum fraction in PDFs
and FFs for a particular kinematical scenario. If it turns out
that they are mostly dominated by moderate values of x̂
and ẑ, then the k2X=Q

2 ≪ 1 criterion is not difficult to satisfy
for large qT ∼Q. Then, the leading order inαs can reasonably
be expected to dominate at large transverse momentum. If,
however, the typical x̂ and ẑ aremuch smaller than1, then they
force a large average k2X . This can create the situation that
higher order corrections are larger relative toOðαsÞ for certain
regions of transverse momentum. (If there is large sensitivity
to the kinematical threshold at k2X ≈0, then this can also
induce large higher order corrections.)
Note that the shape of the transverse momentum

dependence can be significantly affected by the PDFs
and FFs because of the correlation between ζ and ξ:

ζ ¼ z
#
ξ − xþ xq2T=Q

2

ξ − x − xk2X=Q
2

$
: ð13Þ

Inclusive quantities are sensitive to the peak in the cross
section at small qT (and small k2X ) and thus are mainly
sensitive to the region where ζ≈z. Both large q2T and large
k2X , however, push ζ to values significantly higher than z.

III. EXISTING MEASUREMENTS
AND CALCULATIONS

Given the discussion above, we should expect to find
reasonable agreement between fixed order calculations and
SIDIS measurements where qT=Q ratios easily exceed 1
and typical x and z are not such that higher orders are
extremely large. This at first appears promissing when
considering the kinematic ranges of SIDIS data measured
by the H1 collaboration [23], where the fixed order large-qT
prediction from Fig. 4 of Ref. [24] (copied here in Fig. 3)
gives a satisfactory description of π0 production data if
Oðα2sÞ corrections computed by Daleo-de Florian-Sassot
(DDS) are included. An obvious concern is that the order-
of-magnitude higher order corrections needed might be
signaling a breakdown of perturbative convergence. But as

explained in Ref. [24], this behavior is most likely due
simply to the particular kinematics of the H1 data. Indeed,
5 × 10−5 ≲ x≲ 5 × 10−3 for the data in Fig. 3. Also, the
cross section is integrated over z with

z ¼ P ·Pπ

P · q
¼

2xE2
p

Q2
ðEπ0=EpÞð1 − cosðθÞÞ; ð14Þ

where Ep, Eπ0 are the energies of the proton and final state
π0 and θ is the polar scattering angle relative to the
incoming proton direction, all defined in the H1 laboratory
frame. The data are constrained to Eπ0=Ep > 0.01 and
5° < θ < 25°. Using H1 kinematics, we find that the z
values included in Fig. 3 can be as small as ∼0.001. See
Sec. IV of Ref. [24] for more on the role of H1 cuts in
producing Fig. 3. A calculation similar to that in Ref. [24]
was performed in Ref. [25] with similar results. The small
values of z are cause for caution. This is a region where a
description of nonperturbative properties in terms of
fracture functions (see, e.g., Refs. [26,27] and also appli-
cations to SIDIS in Refs. [28,29]) is more appropriate.
One consequence of the small z values is that qT ¼

PH;T=z is very large for each PH;T point in Fig. 3, so even
the smallest transverse momenta in the plots correspond to
very large transverse momenta by the criterion of Eq. (9).
So, it is maybe reasonable to expect that the full range of
transverse momentum observables in Fig. 3 corresponds to
region 3 large transverse momentum. Also, for most of the
range of the integrals over ζ and ξ in Eq. (2), x̂ and ẑ are
close to zero, but with a large contribution at x̂≈1. Given
Eqs. (11)–(12), therefore, it is perhaps not surprising that
Oðα2sÞ calculations actually dominate since they are needed
to produce the large k2X=Q

2.

FIG. 3. Figure 4 from Ref. [24]. The differential cross section
was integrated over x, z, and bins of Q with H1 cuts, calculated
with both leading order and next-to-leading order, and compared
with π0 production data from Ref. [23]. Here, pT corresponds to
our PH;T; see Eq. (1). Note the large correction from Oðα2sÞ.

CHALLENGES WITH LARGE TRANSVERSE MOMENTUM IN … PHYS. REV. D 98, 114005 (2018)

114005-5

• Collinear functions tend 
to be constrained by 
higher energy / less 
detailed observables

• Refit collinear pdfs and 
ffs using large TM?

9

FIG. 7. Ratio calculation analogous to Fig. 5 but for ⇡
+ production measurements from [34].

dependence.
There are a number of possible resolutions that deserve further investigation. An interesting one is that the

hadronization mechanism is di↵erent in high-transverse- momentum SIDIS from the usual picture in terms of universal
FFs. Models used in Monte Carlo event generators might be a source of ideas regarding this possibility. In the context
of this possibility, it is noteworthy that much of the data for SIDIS transverse momentum dependence is describable
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It is possible that threshold e↵ects are important [38, 39]. If that is the case, then there are serious implications for
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the curves in Fig. 3 are reproduced.) The data are from
recent COMPASS measurements for charged hadron pro-
duction [30]. Neither leading order nor next-to-leading
order calculations give reasonable agreement with the
measurements, even for moderate x, z, and qT > Q, as
both systematically undershoot the data, most significantly
at the more moderate values of x close to the valence region.
At smaller x, the disagreement lessens, as might be expected
given the trend in Fig. 3. To highlight the valence region
(x ≥ 0.1) at the larger values ofQ, we have plotted the ratio
between data and theory in Fig. 5 for three particular
kinematic bins from Fig. 4. Even including the Oðα2sÞ
correction, the deviation is typically well above a factor of 2,
even for qT significantly larger than Q. In this context, it is
also worth considering Fig. 8 of Ref. [25], which is for
kinematics similar to those in Fig. 3 but for charged hadrons
measured at ZEUS [31]. The next-to-leading order K factor
is ≳1.5 for large transverse momentum. At least one other
set of SIDIS data at somewhat different kinematics exhibits
the same trend. This is the set of HERMESmeasurements of
πþ multiplicities [32] shown in Fig. 6. Note that the
kinematics very much correspond to the valence region
for the target. Figure 7 shows that the failure to match the
data is even more pronounced than in the COMPASS case.
Even for Q > 3 GeV and qT > Q, the difference is nearly
an order of magnitude.

IV. DISCUSSION

We have argued that there is tension between existing
fixed order pQCD calculations and at least two sets of large
transverse momentum measurements where those calcu-
lations should be reasonably accurate and that this disagree-
ment is too large to be attributable to qT being too small.
Thus, it appears to us to be a genuine mystery that needs

attention, especially for TMD phenomenology. The TMD
formalism relies on approximations that apply only in the
qT=Q → 0 limit, so it is critical to have an alternative
approach to describe the transition to very large transverse
momentum. If standard fixed order collinear pQCD is not
adequate for this, then something new is needed.
It is worth pointing out that one encounters similar

problems in Drell-Yan scattering, where a lowest order
calculation with current PDF sets is easily found to
undershoot the lowest available Q data by very large
factors. It is less clear how to interpret the disagreement
here, however, since most of the existing data for lower Q
regions are close to the threshold region and including
threshold resummation introduces extra subtleties.
The observations of this article have focused on unpo-

larized cross sections, but the implications extend to spin
and azimuthally dependent cross sections, since the key
issue is the relevance of different types of transverse
momentum dependence.
There are a number of possible resolutions that deserve

further investigation. An interesting one is that the hadroni-
zation mechanism is different in high-transverse-momentum
SIDIS from the usual picture in terms of universal FFs.
Models used in Monte Carlo event generators might be a
source of ideas regarding this possibility. In the context of this
possibility, it is noteworthy that much of the data for SIDIS
transverse momentum dependence is describable in a
Gaussian model of TMDs [35,36]. In pQCD, there are also
arguments that certain higher twist correlation functions
actually dominate over leading twist functions. In this picture,
the qq̄ pair that ultimately forms the final state is directly
involved in the hard part [32,37].
It is possible that threshold effects are important [38,39].

If that is the case, then there are serious implications for
TMD studies, because additional nonperturbative effects

FIG. 6. Calculation analogous to Fig. 4 but for πþ production measurements from Ref. [32].
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FIG. 2. Structure of graphs needed at order αsðQÞ2. The last six correspond to virtual corrections to αsðQÞ order graphs.
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At the same time, factorization theorems for the full
qT-dependent SIDIS spectrum, including qT ≈ 0 with non-
perturbative TMD PDFs and TMD FFs, need the large qT ∼
Q component in order to have a completely reliable test of the
factorization formalism. Ideally, such validation will take
place when qT-dependent SIDIS data are included in the
simultaneous extraction of collinear PDFs and FFs as well as
nonperturbativeTMDPDFs andFFs inQCDglobal analysis.

V. CONCLUSION

The computational tools necessary to reproduce Figs. 4
and 5 and other similar calculations are available at [12],
along with documentation. As indicated in the Introduction,
these generally confirm earlier calculations (e.g., [2,3]) of
the overall cross section to within about 20%, well within
present experimental uncertainties, and thus strengthens
our earlier position [1] that significant tension exists
between existing SIDIS data and collinear factorization
calculations at large qT ≳Q.

We have identified the region where collinear factori-
zation appears most reliable as the regions with minimal
K-factors, with current sets of collinear PDFs and FFs. As
discussed in Sec. IV C, minimal values for the K-factor lie
in the region 0.01 < x < 0.1, that is, approximately in
valence kinematics. The increase of the K-factor at both
smaller and larger values of x, may point at the importance
of resummation effects outside the valence region, or the
need to refit collinear PDFs and FFs. This last interpretation
is consistent with that of our previous study [1]. It is also
important to note that the 2 → 2 kinematics of the OðαsÞ
contribution places severe kinematical constraints on the
relationship between the initial and final state partons.
Therefore, it is likely that the generally large K-factors are
at least partly due simply to a kinematical suppression of
the OðαsÞ contribution, and are not a fundamental problem
with the convergence of the perturbation series. We note
that Ref. [37] has addressed somewhat similar issues, but in
the region where qT is still small enough that a qT=Q power

FIG. 5. SIDIS kinematics of h# at COMPASS [36]. x0 is the location in x where the minimum of K-factor is attained at a given
ðQ; qT; zÞ. Samples with x > x0 indicates sensitivity to large threshold corrections.

FIG. 4. K-factor ratio. We use CJ15nlo PDFs [33] and DSS09 FFs [34]. The ratio is bounded at large x due to limiting phase space for
hadron production. The small noise in the lower left panel is due to the oscillatory behavior in the interpolation of FFs tables.
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We examine tests of quantum chromodynamics in the production of lepton pairs in had-
ronic collisions. We emphasize the need for detailed experimental studies of the trans-
verse spectra of lepton pairs. As a further test, we calculate the production of real pho-
tons at high transverse momentum. y/w ratios at the 10~/p level are predicted for pr —-4—6
GeV, with (pp-yX) =(pp- AX) at pz=10 GeV.

The observed" dependence of the average
transverse momentum of lepton pairs produced
in pp collisions on the mass of the pair has been
recently heralded as a success of quantum chro-
modynamics (QCD). ' ' In QCD the transverse
momentum of virtual photons is basically' gen-
erated (in lowest order of the quark-gluon cou-
pling constant) through the two-body kinematics
of quark-antiquark annihilation into a photon-
gluon pair [Fig. 1(b)] or by the Compton scatter-
ing of quarks and gluons [Fig. 1(c)]. This has to
be contrasted with the leading Drell- Yan diagram

(a)

(b)

of Fig. 1(a) where a quark pair with pr=0 yields
a virtual photon with no transverse motion. The
computation of the diagrams in Fig. 1 is straight-
forward. After convoluting them with scaling
quark, antiquark, and gluon structure functions'
we obtain' the transverse-momentum distribution
of lepton pairs shown in Figs. 2 and 3, Our proce-
dure' predicts normalization as well as the shape
of the pr distribution, and therefore the agree-
ment with the data for large values of pr is a
definite success of the theory and a detailed ex-
perimental study of the large-pr behavior for dif-
ferent values of m constitutes the most direct
and meaningful test of the theory. Notice the
dominance of the quark-gluon Compton diagrams
at large pr (Fig. 3). The high-transverse-mo-
mentum lepton-pair spectrum is a direct mani-
festation of gluon dynamics. Contrary to calcu-
lations of (pr), calculations of do/dm dpr' are
not plagued by (i) the technical problem of how to
control the divergence of the diagrams in Figs.

10

(c)

m~ large, p =0l T
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FIG. 1. (a) Drell-Yan diagram for hadroproduction
of massive lepton pair. (b), (c) Gluon corrections to
the Drell-Yan diagram of (a) in lowest order of the
quark-gluon coupling constant (vertex corrections not
shown). (d) Schematic representation of the transition
from virtual to real photon secondaries. Solid, wiggly,
and curly lines represent, respectively, quarks, pho-
tons, and gluons.

p (Gev)

FIG. 2. The transverse momentum spectrum of lep-
ton pairs produced in pp collisions at y =0, at v's =27.4
GeV. The curves show the @CD calculation; the data
are from Ref. 2.

1117

FIG. 1. Figure 2 of Ref.[7] showing the µ
+

µ
� cross section di↵erential in the total transverse momentum of the pair at y = 0.

The solid curves are O (↵s) predictions using the PDFs listed in Ref. [8]. The scale m is the invariant mass of the µ
+

µ
� pair

and pT is its transverse momentum in the center-of-mass system. (Note that it corresponds to our qT and m corresponds to
our Q.) (These exact data appear to be unpublished.)

for moderate x, moderate z, Q of a few GeVs, and qT & Q, existing data are poorly described by both leading order
or next-to-leading order calculations. In Sec. IV, we comment on our observations.

II. FACTORIZATION AND REGIONS OF PARTONIC KINEMATICS

Our focus will be on SIDIS because this is the process currently mostly closely connected with partonic structure
studies at moderate Q.

We will express quantities mainly in terms of the conventional kinematical variables z ⌘ PH · P/(P · q) and
x ⌘ Q

2
/2P · q. PH,T is the Breit frame transverse momentum of the produced hadron, and P and q are the four-

momenta of the incoming target hadron and the virtual photon respectively. We assume that x and 1/Q are small
enough that both the proton, final state hadron, and lepton masses can be dropped in phase space factors. As
mentioned in the introduction, it is useful to express transverse momentum in terms of

qT = �PH,T

z
. (1)

In a frame where the incoming and outgoing hadrons are back-to-back, qT is the transverse momentum of the virtual
photon.

The factorization theorem that relates the hadronic and partonic di↵erential cross sections in SIDIS at large PH,T

is

4P
0
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E

0 d�

d3l0 d3PH
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1
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0 d�̂ij
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◆
fi/P (⇠; µ)dH/j(⇣; µ) + P.S. . (2)

The 1/⇠ is from the partonic flux factor, and the 1/⇣
2 is from the conversion between k1 and PH . The indices i

and j denote, respectively, the flavors of the initial parton in the proton and of the outgoing fragmenting parton.
The incoming and outgoing parton momenta p and k1 satisfy p = ⇠P and k1 = PH/⇣. (Indices i and j for incoming
and outgoing partons pi and k1,j will not be shown explicitly on the momenta but are understood). fi/P (⇠; µ) and
dH/j(⇣; µ) are the collinear parton distribution and fragmentation functions respectively, with a renormalization group
scale µ. It is also useful to define partonic variables

x̂ ⌘ Q
2

(2p · q)
=

x

⇠
, ẑ ⌘ k1 · p

(p · q)
=

z

⇣
, k1T ⌘ PH,T

⇣
. (3)

- Halzen & Scott, Phys. 
Rev. Lett. 40, 1117 (1978)
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for moderate x, moderate z, Q of a few GeVs, and qT & Q, existing data are poorly described by both leading order
or next-to-leading order calculations. In Sec. IV, we comment on our observations.

II. FACTORIZATION AND REGIONS OF PARTONIC KINEMATICS

Our focus will be on SIDIS because this is the process currently mostly closely connected with partonic structure
studies at moderate Q.

We will express quantities mainly in terms of the conventional kinematical variables z ⌘ PH · P/(P · q) and
x ⌘ Q

2
/2P · q. PH,T is the Breit frame transverse momentum of the produced hadron, and P and q are the four-

momenta of the incoming target hadron and the virtual photon respectively. We assume that x and 1/Q are small
enough that both the proton, final state hadron, and lepton masses can be dropped in phase space factors. As
mentioned in the introduction, it is useful to express transverse momentum in terms of

qT = �PH,T

z
. (1)

In a frame where the incoming and outgoing hadrons are back-to-back, qT is the transverse momentum of the virtual
photon.

The factorization theorem that relates the hadronic and partonic di↵erential cross sections in SIDIS at large PH,T

is

4P
0

H
E

0 d�

d3l0 d3PH

=

Z
1

x

d⇠

⇠

Z
1

z

d⇣

⇣2

✓
4k

0

1
E

0 d�̂ij

d3l0 d3k1

◆
fi/P (⇠; µ)dH/j(⇣; µ) + P.S. . (2)

The 1/⇠ is from the partonic flux factor, and the 1/⇣
2 is from the conversion between k1 and PH . The indices i

and j denote, respectively, the flavors of the initial parton in the proton and of the outgoing fragmenting parton.
The incoming and outgoing parton momenta p and k1 satisfy p = ⇠P and k1 = PH/⇣. (Indices i and j for incoming
and outgoing partons pi and k1,j will not be shown explicitly on the momenta but are understood). fi/P (⇠; µ) and
dH/j(⇣; µ) are the collinear parton distribution and fragmentation functions respectively, with a renormalization group
scale µ. It is also useful to define partonic variables

x̂ ⌘ Q
2

(2p · q)
=

x

⇠
, ẑ ⌘ k1 · p

(p · q)
=

z

⇣
, k1T ⌘ PH,T

⇣
. (3)

- Halzen & Scott, Phys. 
Rev. Lett. 40, 1117 (1978)

Corrected data
+ modern pdf set

Data from A. S. Ito et al., 
Phys. Rev. D23, 604 (1981)



Drell-Yan: New Results

• Current status: Similar trend

A. E866

The E866/NuSea experiment [40] was a fixed-target
Drell-Yan experiment designed to measure the internal
structure of the nucleon, in particular the asymmetry of
down and up antiquarks in the sea, using dimuon events
originating from the collision of an 800-GeV proton beam
with hydrogen and deuterium targets (

ffiffiffi
s

p
¼ 38.8 GeV).

The measurement of the qT distribution of the muon pair is
presented in [41], a Fermilab Ph.D. thesis, and results are
given in terms of the differential cross section:

Ed3σ
d3q

≡ 2E
π

ffiffiffi
s

p dσ
dxF dq2T

¼ dσ
πdydq2T

: ð6Þ

Data are reported for different bins in xF ¼ 2pL=
ffiffiffi
s

p
,

ranging from −0.05 to 0.8, and are integrated over different
ranges in the invariant mass Q of the muon pair.
The comparison of our LO and NLO theoretical calcu-

lations with the experimental data is shown in Fig. 2 for the
bin 0.15 ≤ xF ≤ 0.35 and for the invariant mass range
4.2 GeV ≤ Q ≤ 5.2 GeV. The lower part of the plot shows
the ratio (data-theory)/theory. The error margins of the
data points correspond to the sum in quadrature of
statistical and systematic uncertainties, including also an
overall normalization uncertainty of 6.5%, as indicated in
[41]. Our theoretical predictions are computed at the
average Q value and xF of each bin (Q ¼ 4.7 GeV and
xF ¼ 0.25 in the case of Fig. 2). The left plot of
Fig. 2 shows the comparison of the experimental data with
NLO QCD ½Oðα2sÞ% predictions for central values of the

factorization and renormalization scales, μR ¼ μF ¼ Q.
The 90% confidence interval of the CT14 PDF set [39]
is included in the plot, but the corresponding variation is
barely visible.
An immediate observation from Fig. 2 is that the NLO

cross section is below the E866 data at high transverse
momenta, qT ≳ 3 GeV, even within the relatively large
uncertainties that the data have here. The NLO cross
section falls below the data even much more severely at
lower qT closer to the matching regime with TMD physics,
where the experimental uncertainties are much smaller.
This provides further evidence to our observation above
that this regime is presently not well understood theoreti-
cally. At the same time we emphasize that data from [41],
integrated over qT, are in good agreement with theoretical
predictions and are commonly used in global PDF fits
[42,43] [see, for instance, Sec. 5.1 of [41], where the only
relevant discrepancy concerns the lowest mass point (hQi≃
4.4 GeV) for 0.05 < xF < 0.25 (Figs. 5.1–5.5)]. This
suggests that TMD physics may be the main player for
the cross section up to relatively high qT , since the tail at very
large qT makes only a small contribution to the cross section.
The right plot of Fig. 2 shows the effect of varying the

renormalization and factorization scales independently in
the range Q=2 < μR, μF < 2Q, both for the LO QCD
½OðαsÞ% and the NLO QCD ½Oðα2sÞ% calculation. The fact
that, for qT ≳ 2.5 GeV, the NLO uncertainty band overlaps
with (and is eventually included in) the LO uncertainty
band provides some indication that perturbation theory is
well behaved for this process. On the other hand, we also

)
(

( ) ( )

)
(

FIG. 2. Transverse-momentum distribution of Drell-Yan dimuon pairs at
ffiffiffi
s

p
¼ 38.8 GeV in a selected invariant mass range and

Feynman-x range: experimental data from Fermilab E866 (hydrogen target) [41] compared to LO QCD and NLO QCD results. (Left
panels) NLO QCD ½Oðα2sÞ% calculation with central values of the scales μR ¼ μF ¼ Q ¼ 4.7 GeV, including a 90% confidence interval
from the CT14 PDF set [39]. (Right panels) LO QCD and NLO QCD theoretical uncertainty bands obtained by varying the
renormalization and factorization scales independently in the range Q=2 < μR, μF < 2Q.
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• If qT /Q is small, TMD fragmentation functions are 
needed.

• If qT /Q is large, there is recoil against a high 
momentum parton and collinear factorization is 
needed:

5

dependent structure functions [6]. A convenient way to extract each structure function in Eq. (12) is to contract the
hadronic tensor with associated extraction tensors, Pµ⌫

L
and Pµ⌫

T
:

WT = Pµ⌫

T
Wµ⌫ , WL = Pµ⌫

L
Wµ⌫ , (13)

where

Pµ⌫

T
=

1

3
(�gµ⌫ � ZµZ⌫ + XµX⌫) , Pµ⌫

L
= ZµZ⌫ , (14)

with the Zµ and Xµ defined as in Eq. (3).
After changing variables to zA, zB , qT (see Appendix A for details),

d�AB

dzAdzBdqTd cos ✓d�
=

↵2
emzAzB

�
Q2 + q2T

�2
qT

32⇡2Q6

⇣
1 + cos2 ✓

⌘
WT + sin2 ✓ WL

�
, (15)

where ✓ and � are the polar and azimuthal angles of lepton l with respect to the Z and X directions in the photon
frame. For the polarization independent case considered in this paper, we integrate this over ✓ and � to get

d�AB

dzAdzBdqT
=

↵2
emzAzB

�
Q2 + q2T

�2
qT

12⇡Q6
[2WT + WL] . (16)

In the small transverse momentum limit, the process in Eq. (1) is the one that is most simply and directly related
to TMD ↵s through derivations such as Ref. [4] or more recently in Ref. [6, Chapt. 13]. Note that the totally inclusive
nature of the final state apart from the dihadron pair (with no specification of physical jets or properties like thrust)
and the measurement of the dihadron pair relative to an axis defined as above is very important for the derivation,
at least in its most basic form, and for the identification of the relevant correlation functions as standard TMD and
collinear ↵s. Measurements within a jet and relative to a thrust axis [69] of course contain important information in
relation to TMD ↵s, but the connection is less direct.

III. FACTORIZATION AT LARGE, MODERATE AND SMALL TRANSVERSE MOMENTUM

To calculate in perturbative QCD, the di↵erential cross section in Eq. (16) needs to be factorized into a hard part
and ↵s, and di↵erent types of factorization are appropriate depending on the particular kinematical regime. Assuming
zA,B are large enough to ensure that hadrons originate from separately fragmenting quarks, the three kinematical
regions of interest for exclusive scattering are determined by the transverse momentum qT. There are three major
regions: i.) qT ⇠ Q so that qT and Q are equally viable hard scales, ii.) m ⌧ qT ⌧ Q so that small qT approximations
are useful but qT is large enough that intrinsic non-perturbative e↵ects are negligible and logarithmic enhancement
are only a correction, iii.) qT . m and all aspects of a TMD-based treatment are needed, including non-perturbative
intrinsic transverse momentum (see also Sec. IV). We will briefly summarize the calculation of each of these below.

A. The fixed O (↵s) cross section at large transverse momentum

The scenario under consideration is one in which the two observed hadrons are produced at wide angle (so that
(pA + pB)2 ⇠ Q2), but are far from back-to-back (so that qT ⇠ Q). This requires at least one extra gluon emission
in the hard part. See Fig. 2 (A) for the general structure of Feynman graphs contributing at large qT and for our
momentum labeling conventions.

The basic statement of collinear factorization for the di↵erential cross section is

EAEB

d�AB

d3pAd3pB

=
X

i,j

Z 1

zA

d⇣A

Z 1

zB

d⇣B

✓
EAEB

d�̂ij(ẑA, ẑB)

d3pAd3pB

◆
dHA/i(⇣A)dHB/j(⇣B) (17)

where the hat on the cross section in the integrand indicates that it is for the partonic subprocess l1+l2 ! kA+kB+X.
kA and kB will label the momenta of the partons that hadronize. The integrals are over the momentum fraction
variables ⇣A and ⇣B that relate the hadron and parton momenta in Fig. 2:

kA ⌘ pA/⇣A , kB ⌘ pB/⇣B . (18)

4

coordinates and neglecting masses the momenta in the hadron frame are:

qh =

 r
Q2 + q2

hT

2
,

r
Q2 + q2

hT

2
, qhT

!
, (4a)

pA,h = (p+
A,h

, 0,0) , (4b)

pB,h = (0, p�
B,h

,0) . (4c)

We have chosen to boost along the z-axis in the hadron frame until q+
h

= q�
h

. Useful Lorentz-invariant variables are

zA =
pA · pB
q · pB

=
p+
A,h

q+
h

, zB =
pA · pB
q · pA

=
p�
B,h

q�
h

. (5)

Note that we take the Lorentz invariant ratios to define zA and zB . Since in this paper we assume that the hadron
masses are negligible, these are also equal to the light-cone ratios shown. For a treatment that includes kinematical
mass e↵ects, see Ref. [68]. The transverse momentum of the photon in the hadron frame is:

q2
hT =

2 pA · q pB · q
pA · pB

� Q2 = Q2 tan2
�
�✓/2

�
. (6)

As �✓ approaches 180� in Fig. 1, far from the back-to-back configuration, qhT as defined in Eq. (6) diverges, while for
�✓ ⇡ 0 it approaches zero. From here forward, we will drop the h subscript for simplicity and qT will be understood
to refer to the hadron frame photon transverse momentum.

The transverse momentum has an absolute kinematical upper bound:

qMax
T

2  Q2(1 � zA)(1 � zB)

1 � (1 � zA)(1 � zB)
. (7)

Note that q2T can be larger or smaller than Q2 depending on zA and zB . The invariant mass-squared of the dihadron
pair is

(pA + pB)2 = zAzB
⇣
Q2 + q2T

⌘
, (8)

which is of size Q2 as long as zA and zB are fixed and not too small.

C. The transverse momentum di↵erential cross section

Written in terms of a leptonic and a hadronic tensor, the cross section under consideration is

EAEB

d�AB

d3pAd3pB

=
↵2
em

8⇡3Q6
Lµ⌫W

µ⌫ (9)

where the leptonic tensor is

Lµ⌫ ⌘ lµl0⌫ + l0µl⌫ � gµ⌫ l0 · l , (10)

and the hadronic tensor is

Wµ⌫ ⌘ 4⇡3
X

X

h0|jµ(0)|pA, pB , XihpA, pB , X|j⌫(0)|0i�(4)(q � pA � pB � pX) , (11)

where j is the electromagnetic current, pX is the momentum of the unobserved part of the final state, and the
P

X

includes all sums and integrals over unobserved final states X. The structure functions are related to the hadronic
tensor through the decomposition

Wµ⌫(q, pA, pB) =

✓
�gµ⌫ +

qµq⌫

Q2
� ZµZ⌫

◆
WT + ZµZ⌫WL . (12)

where WT and WL are the unpolarized structure functions. The T and L subscripts denote transverse and longitudinal
polarizations respectively for the virtual photon. For our purposes, we may neglect polarization and azimuthally
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FIG. 2: (a) The general diagrammatic structure contributing to Eq. (1) at large qT and at LO in ↵s. The outgoing partonic
lines are dotted to indicate that generally they can be of any type. In the region of interest for this paper, their momenta
deviate by wide angles from the back-to-back orientation for the dihadron pair. H represents the hard part of the interaction
and the CA,B,C are the collinear subgraphs [6]. (b) The O (↵s) partonic contribution to the square-modulus amplitude in the
factorization of (a).
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FIG. 3: Partonic channels that contribute at order ↵s. Detailed explanation in Sec. III A.

The i, j sum is over the di↵erent possible flavors of parton that can hadronize, i, j 2 {u, d, g, ū . . . }. The number
of active flavors depends on the scale. The dHA/i(⇣A) and dHB/j(⇣B) are the fragmentation functions for flavor i(j)
partons to hadronize into hadrons of flavor A (B). We use the standard abbreviations

ẑA = zA/⇣A , ẑB = zB/⇣B , (19)

which follow from Eq. (18) and the partonic analogue of the definitions in Eq. (5). The momentum of the parton
whose hadronization is unobserved is kC . After factorization, the hard part involves the square-modulus of the H
subgraph with massless, on-shell external partons. The graphs that contribute to this at lowest order are shown in
Fig. 2(b).

It is useful to define a partonic version of the hadronic tensor,

cWµ⌫

ij
⌘ 4⇡3

X

X

h0|jµ
ij

(0)|kA, kB , XihkA, kB , X|j⌫
ij

(0)|0i�(4)(q � kA � kB � pX) , (20)
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coordinates and neglecting masses the momenta in the hadron frame are:
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Q2 + q2

hT
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,
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2
, qhT
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, (4a)

pA,h = (p+
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, 0,0) , (4b)
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B,h

,0) . (4c)

We have chosen to boost along the z-axis in the hadron frame until q+
h

= q�
h

. Useful Lorentz-invariant variables are

zA =
pA · pB
q · pB

=
p+
A,h
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h

, zB =
pA · pB
q · pA

=
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B,h
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h

. (5)

Note that we take the Lorentz invariant ratios to define zA and zB . Since in this paper we assume that the hadron
masses are negligible, these are also equal to the light-cone ratios shown. For a treatment that includes kinematical
mass e↵ects, see Ref. [68]. The transverse momentum of the photon in the hadron frame is:

q2
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� Q2 = Q2 tan2
�
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�
. (6)

As �✓ approaches 180� in Fig. 1, far from the back-to-back configuration, qhT as defined in Eq. (6) diverges, while for
�✓ ⇡ 0 it approaches zero. From here forward, we will drop the h subscript for simplicity and qT will be understood
to refer to the hadron frame photon transverse momentum.

The transverse momentum has an absolute kinematical upper bound:

qMax
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2  Q2(1 � zA)(1 � zB)
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. (7)

Note that q2T can be larger or smaller than Q2 depending on zA and zB . The invariant mass-squared of the dihadron
pair is

(pA + pB)2 = zAzB
⇣
Q2 + q2T

⌘
, (8)

which is of size Q2 as long as zA and zB are fixed and not too small.

C. The transverse momentum di↵erential cross section

Written in terms of a leptonic and a hadronic tensor, the cross section under consideration is
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Lµ⌫W

µ⌫ (9)

where the leptonic tensor is

Lµ⌫ ⌘ lµl0⌫ + l0µl⌫ � gµ⌫ l0 · l , (10)

and the hadronic tensor is

Wµ⌫ ⌘ 4⇡3
X

X

h0|jµ(0)|pA, pB , XihpA, pB , X|j⌫(0)|0i�(4)(q � pA � pB � pX) , (11)

where j is the electromagnetic current, pX is the momentum of the unobserved part of the final state, and the
P

X

includes all sums and integrals over unobserved final states X. The structure functions are related to the hadronic
tensor through the decomposition

Wµ⌫(q, pA, pB) =

✓
�gµ⌫ +

qµq⌫

Q2
� ZµZ⌫

◆
WT + ZµZ⌫WL . (12)

where WT and WL are the unpolarized structure functions. The T and L subscripts denote transverse and longitudinal
polarizations respectively for the virtual photon. For our purposes, we may neglect polarization and azimuthally
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FIG. 2: (a) The general diagrammatic structure contributing to Eq. (1) at large qT and at LO in ↵s. The outgoing partonic
lines are dotted to indicate that generally they can be of any type. In the region of interest for this paper, their momenta
deviate by wide angles from the back-to-back orientation for the dihadron pair. H represents the hard part of the interaction
and the CA,B,C are the collinear subgraphs [6]. (b) The O (↵s) partonic contribution to the square-modulus amplitude in the
factorization of (a).
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FIG. 3: Partonic channels that contribute at order ↵s. Detailed explanation in Sec. III A.

The i, j sum is over the di↵erent possible flavors of parton that can hadronize, i, j 2 {u, d, g, ū . . . }. The number
of active flavors depends on the scale. The dHA/i(⇣A) and dHB/j(⇣B) are the fragmentation functions for flavor i(j)
partons to hadronize into hadrons of flavor A (B). We use the standard abbreviations

ẑA = zA/⇣A , ẑB = zB/⇣B , (19)

which follow from Eq. (18) and the partonic analogue of the definitions in Eq. (5). The momentum of the parton
whose hadronization is unobserved is kC . After factorization, the hard part involves the square-modulus of the H
subgraph with massless, on-shell external partons. The graphs that contribute to this at lowest order are shown in
Fig. 2(b).

It is useful to define a partonic version of the hadronic tensor,

cWµ⌫

ij
⌘ 4⇡3

X

X

h0|jµ
ij

(0)|kA, kB , XihkA, kB , X|j⌫
ij

(0)|0i�(4)(q � kA � kB � pX) , (20)
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factorization of (a).

(A) (B) (C)

(D) (E) (F)

FIG. 3: Partonic channels that contribute at order ↵s. Detailed explanation in Sec. III A.

The i, j sum is over the di↵erent possible flavors of parton that can hadronize, i, j 2 {u, d, g, ū . . . }. The number
of active flavors depends on the scale. The dHA/i(⇣A) and dHB/j(⇣B) are the fragmentation functions for flavor i(j)
partons to hadronize into hadrons of flavor A (B). We use the standard abbreviations

ẑA = zA/⇣A , ẑB = zB/⇣B , (19)

which follow from Eq. (18) and the partonic analogue of the definitions in Eq. (5). The momentum of the parton
whose hadronization is unobserved is kC . After factorization, the hard part involves the square-modulus of the H
subgraph with massless, on-shell external partons. The graphs that contribute to this at lowest order are shown in
Fig. 2(b).

It is useful to define a partonic version of the hadronic tensor,

cWµ⌫

ij
⌘ 4⇡3

X

X

h0|jµ
ij

(0)|kA, kB , XihkA, kB , X|j⌫
ij

(0)|0i�(4)(q � kA � kB � pX) , (20)
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in which case

Wµ⌫ =
X

i,j

Z 1

zA

d⇣A
⇣2
A

Z 1

zB

d⇣B
⇣2
B

cWµ⌫

ij
(ẑA, ẑB)dHA/i(⇣A)dHB/j(⇣B) . (21)

Working with the hadronic tensor and with the extraction tensors like Eq. (13) conveniently automates the steps to
obtain any arbitrary structure function. The di↵erential cross section is

d�AB

dzAdzBdqT
=
X

i,j

Z 1

zA

d⇣A
⇣A

Z 1

zB

d⇣B
⇣B

✓
d�̂ij(ẑA, ẑB)

dẑAdẑBdqT

◆
dHA/i(⇣A)dHB/j(⇣B) , (22)

and the partonic cross section can be expressed analogously to Eq. (16),

d�̂ij

dẑAdẑBdqT
=

↵2
emẑAẑB

�
Q2 + q2T

�2
qT

12⇡Q6

h
2cWT,ij +cWL,ij

i
, (23)

where cWT,ij and cWL,ij are partonic structure functions calculated from the graphs in Fig. 2(b).
Given the expressions for the squared amplitudes in Fig. 2(b), the evaluation of the di↵erential cross section becomes

straightforward. Each possible combination of final state parton pairs in Fig. 2(b) can hadronize into HA and HB

with fragmentation functions that depend on both the fragmenting parton and final state hadron. Six such channels
contribute at leading order in ↵s, and we organize these diagrammatically in Fig. 3, with kA, kB and kC assigned to
the quark, antiquark or gluon according to whether it hadronizes to HA, HB , or is unobserved. A solid dot marks the
parton that hadronizes into HA (always kA parton momentum) and the open dot marks the parton that hadronizes
into HB (always kB momentum). There is an integral over all momentum of the remaining line (kC). Quark lines
include all active quark flavors, and are shown separately from the anti-quark lines since they correspond to separate
↵s. Notice that, unlike in the case of the qT -integrated cross section for single hadron production, there is already
sensitivity to the gluon fragmentation function at the lowest non-vanishing order. The analytic expressions needed
for the calculation are summarized in Appendix B.

B. The asymptotic
q2T
Q2 ! 0 limit

The small q2T/Q
2 limit of Eq. (22) involves considerable simplifications analogous to those obtained in TMD fac-

torization, but applied to fixed order massless partonic graphs. It is potentially a useful simplification, therefore, in
situations where q2T is small enough that a q2T/Q

2 expansion applies, but still large enough that fixed order pertur-
bative calculations are reasonable approximations. As we will see in later sections, it is also useful for estimating the
borders of the regions where small q2T/Q

2 approximations are appropriate.
The asymptotic term is obtainable by directly expanding the fixed order calculation in powers of small qT/Q, with

a careful treatment of the soft gluon region in the integrals over ⇣A and ⇣B . The steps are similar to those in SIDIS,
and we refer to Ref. [78] for a useful discussion of them. When performed for the e+e� annihilation case under
consideration here, the result is
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i�
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where Pij are the leading order unpolarized splitting functions

Pqq(z) = Pq̄q̄(z) = CF

"
1 + z2

(1 � z)+
+

3

2
� (1 � z)

#
, Pgq(z) = Pgq̄(z) = CF

"
1 + (1 � z)2

z

#
, (25)

= Hadron A

= Hadron B
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in which case
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Working with the hadronic tensor and with the projection tensors like Eq. (13) conveniently automates the steps to
obtain any arbitrary structure function. The di↵erential cross section is

d�AB

dzAdzBdqT
=
X

i,j

Z 1

zA

d⇣A
⇣A

Z 1

zB

d⇣B
⇣B

✓
d�̂ij(ẑA, ẑB)
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and the partonic cross section can be expressed analogously to Eq. (16),
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dẑAdẑBdqT
=

↵2
emẑAẑB
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i
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where cWT,ij and cWL,ij are partonic structure functions calculated from the graphs in Fig. 2(b).
Given the expressions for the squared amplitudes in Fig. 2(b), the evaluation of the di↵erential cross section becomes

straightforward. Each possible combination of final state parton pairs in Fig. 2(b) can hadronize into HA and HB

with fragmentation functions that depend on both the fragmenting parton and final state hadron. Six such channels
contribute at leading order in ↵s, and we organize these diagrammatically in Fig. 3, with kA, kB and kC assigned to
the quark, antiquark or gluon according to whether it hadronizes to HA, HB , or is unobserved. A solid dot marks the
parton that hadronizes into HA (always kA parton momentum) and the open dot marks the parton that hadronizes
into HB (always kB momentum). There is an integral over all momentum of the remaining line (kC). Quark lines
include all active quark flavors, and are shown separately from the anti-quark lines since they correspond to separate
↵s. Notice that, unlike in the case of the qT -integrated cross section for single hadron production, there is already
sensitivity to the gluon fragmentation function at the lowest non-vanishing order. Some of the analytic expressions
needed for the calculation are summarized in Appendix B.
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borders of the regions where small q2T/Q

2 approximations are appropriate.
The asymptotic term is obtainable by directly expanding the fixed order calculation in powers of small qT/Q, with

a careful treatment of the soft gluon region in the integrals over ⇣A and ⇣B . The steps are similar to those in SIDIS,
and we refer to Ref. [70] for a useful discussion of them. When performed for the e+e� annihilation case under
consideration here, the result is
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• Hard transverse momentum: Eq. (38) is much less than 1, and Eq. (37) is comparable to 1. Therefore, fixed
order calculations like those of the previous section are justified.

• Intermediate transverse momentum: Eq. (38) is much less than 1, but Eq. (37) is also much less than one. In this
case, the previous two types of approximations are simultaneously justifiable. Transverse momentum dependence
is mostly perturbative, but large logarithms of q2T/Q

2 imply that transverse momentum resummation and/or
TMD evolution are nevertheless important.

The large transverse momentum fixed order calculations are the most basic of these, since they involve only collinear
factorization starting with tree level graphs, so it is worthwhile to confirm that there is a region where they are
phenomenologically accurate, as is the aim of the present paper. Direct comparisons between fixed order calculations
and measurements can help to confirm or challenge the above expectations. For example, consider a case where
Q ⇠ 10 GeV while the largest measurable transverse momenta about ⇠ 7 GeV. Then logarithms of q2T/Q

2, i.e.,
| ln .72| ⇠ .7, are not large while Eq. (37) is a non-negligible ⇠ 0.5. These are ideal kinematics, therefore, for testing
the regime where fixed order calculations are expected to apply.

V. LARGE AND SMALL TRANSVERSE MOMENTUM COMPARISON

We begin our comparison by computing the fixed order collinear factorization based cross section for the q2T ⇠ Q2

region using the DSS14 ↵ parametrizations [64], and we compare with the calculation of the asymptotic term in
Eq. (24). The results are shown for both moderate Q ⇠ 12 GeV and for large Q ⇠ 50 GeV in Fig. 4 (left panel),
with zA,B = 0.3 in both cases. The horizontal axis is the ratio qT/qMax

T , using Eq. (7) to make the proximity to the
kinematical large-q2T threshold clearly visible.

The exact kinematical relation (for 1 ! 3 scattering) between ⇣B and ⇣A is

⇣B = zB
(Q2 + q2T)(zA � ⇣A)

q2TzA + Q2(zA � ⇣A)
, (39)

while the cross section in the asymptotically small q2T/Q
2 limit has either ⇣A = zA with ⇣B � zB or ⇣B = zB with

⇣A � zA. The asymptotic phase space in the ⇣B-⇣A plane approaches a rectangular wedge shape in the small q2T limit,
shown as the solid black lines in Fig. 4 (right panel) for fixed values of zA = zB . For comparison, the di↵erently colored
dashed, dot-dashed, and dotted lines show the ⇣B-⇣A curves from Eq. (39) for various nonzero q2T. The deviation
between the colored and black curves gives one indication of the degree of error introduced by taking the small q2T
limit. Fig. 4(right panel) shows how these grow at large zA,B . A non-trivial kinematical correlation forms between
momentum fractions ⇣A and ⇣B in the large zA, zB and large q2T regions. Notice also that the contours are scale
independent, since qMax

T is proportional to Q2, so kinematical errors from small qT approximations are likewise scale
independent.

The point along the horizontal axis where the asymptotic term turns negative is another approximate indication of
the region above which small q2T/Q

2 approximations begin to fail and the fixed order collinear factorization treatment
should become more reliable, provided zA,B are at fixed moderate values and qT is not too close to the overall
kinematical thresholds. That point is shown in Fig. 4(left) for two representative values of small (Q = 12 GeV)
and large Q = 50 GeV. The transition is at rather small transverse momentum, roughly qT/qMax

T ⇠ 0.2, though the
exact position depends on a number of details, including the shapes of the collinear fragmentation functions. If the
asymptotic term is used as the indicator, then the transition is also roughly independent of Q.

We are ultimately interested in asking how the fixed order collinear calculation compares with existing TMD
↵ parametrizations near the small-to-large transverse momentum transition point. A reasonable range of non-
perturbative parameters like hK2

H/j,Ti and g2 in Eqs. (31)–(32), can be estimated from a survey of existing phe-

nomenological fits. We will make the approximation that all light flavors have equal hK2
H/j,Ti = hK2

Ti for pion

production. Then values for hK2
H/j,Ti lie in the range from about .11 GeV�2 to .23 GeV�2 [19], which straddles

the value 0.16 GeV�2 in Ref. [72]. For g2, we use a minimum value of 0 to estimate the e↵ect of having no non-
perturbative evolution at all, and we use a maximum value of .184 GeV�2, from Ref. [73], which is at the larger range
of values that have been extracted This range also straddles the g2 = .13 GeV�2 found in Ref. [19]. In all cases,
we use the lowest order perturbative anomalous dimensions since these were used in most of the Gaussian-based fits
above. Collectively, the numbers above produce the blue bands in Fig. 5 (left). The references quoted above generally
include uncertainties for their parametrizations of hK2

j,Ti and g2, but these are much smaller than the uncertainty
represented by the blue band in Fig. 5 (left). We use a representative estimate of bmax = 1.0 GeV�1; Refs. [19] and
[73] use slightly larger values (1.123 GeV�1 and 1.5 GeV�1 respectively), but larger bmax & 1.0 GeV�1 also has a
small e↵ect and only increases the general disagreement with the collinear fixed order calculation.
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coordinates and neglecting masses the momenta in the hadron frame are:

qh =

 r
Q2 + q2

hT

2
,

r
Q2 + q2

hT

2
, qhT

!
, (4a)

pA,h = (p+
A,h

, 0,0) , (4b)

pB,h = (0, p�
B,h

,0) . (4c)

We have chosen to boost along the z-axis in the hadron frame until q+
h

= q�
h

. Useful Lorentz-invariant variables are

zA =
pA · pB
q · pB

=
p+
A,h

q+
h

, zB =
pA · pB
q · pA

=
p�
B,h

q�
h

. (5)

Note that we take the Lorentz invariant ratios to define zA and zB . Since in this paper we assume that the hadron
masses are negligible, these are also equal to the light-cone ratios shown. For a treatment that includes kinematical
mass e↵ects, see Ref. [68]. The transverse momentum of the photon in the hadron frame is:

q2
hT =

2 pA · q pB · q
pA · pB

� Q2 = Q2 tan2
�
�✓/2

�
. (6)

As �✓ approaches 180� in Fig. 1, far from the back-to-back configuration, qhT as defined in Eq. (6) diverges, while for
�✓ ⇡ 0 it approaches zero. From here forward, we will drop the h subscript for simplicity and qT will be understood
to refer to the hadron frame photon transverse momentum.

The transverse momentum has an absolute kinematical upper bound:

qMax
T

2  Q2(1 � zA)(1 � zB)

1 � (1 � zA)(1 � zB)
. (7)

Note that q2T can be larger or smaller than Q2 depending on zA and zB . The invariant mass-squared of the dihadron
pair is

(pA + pB)2 = zAzB
⇣
Q2 + q2T

⌘
, (8)

which is of size Q2 as long as zA and zB are fixed and not too small.

C. The transverse momentum di↵erential cross section

Written in terms of a leptonic and a hadronic tensor, the cross section under consideration is

EAEB

d�AB

d3pAd3pB

=
↵2
em

8⇡3Q6
Lµ⌫W

µ⌫ (9)

where the leptonic tensor is

Lµ⌫ ⌘ lµl0⌫ + l0µl⌫ � gµ⌫ l0 · l , (10)

and the hadronic tensor is

Wµ⌫ ⌘ 4⇡3
X

X

h0|jµ(0)|pA, pB , XihpA, pB , X|j⌫(0)|0i�(4)(q � pA � pB � pX) , (11)

where j is the electromagnetic current, pX is the momentum of the unobserved part of the final state, and the
P

X

includes all sums and integrals over unobserved final states X. The structure functions are related to the hadronic
tensor through the decomposition

Wµ⌫(q, pA, pB) =

✓
�gµ⌫ +

qµq⌫

Q2
� ZµZ⌫

◆
WT + ZµZ⌫WL . (12)

where WT and WL are the unpolarized structure functions. The T and L subscripts denote transverse and longitudinal
polarizations respectively for the virtual photon. For our purposes, we may neglect polarization and azimuthally

4

coordinates and neglecting masses the momenta in the hadron frame are:

qh =

 r
Q2 + q2

hT

2
,

r
Q2 + q2

hT

2
, qhT

!
, (4a)

pA,h = (p+
A,h

, 0,0) , (4b)

pB,h = (0, p�
B,h

,0) . (4c)

We have chosen to boost along the z-axis in the hadron frame until q+
h

= q�
h

. Useful Lorentz-invariant variables are

zA =
pA · pB
q · pB

=
p+
A,h

q+
h

, zB =
pA · pB
q · pA

=
p�
B,h

q�
h

. (5)

Note that we take the Lorentz invariant ratios to define zA and zB . Since in this paper we assume that the hadron
masses are negligible, these are also equal to the light-cone ratios shown. For a treatment that includes kinematical
mass e↵ects, see Ref. [68]. The transverse momentum of the photon in the hadron frame is:

q2
hT =

2 pA · q pB · q
pA · pB

� Q2 = Q2 tan2
�
�✓/2

�
. (6)

As �✓ approaches 180� in Fig. 1, far from the back-to-back configuration, qhT as defined in Eq. (6) diverges, while for
�✓ ⇡ 0 it approaches zero. From here forward, we will drop the h subscript for simplicity and qT will be understood
to refer to the hadron frame photon transverse momentum.

The transverse momentum has an absolute kinematical upper bound:

qMax
T

2  Q2(1 � zA)(1 � zB)

1 � (1 � zA)(1 � zB)
. (7)

Note that q2T can be larger or smaller than Q2 depending on zA and zB . The invariant mass-squared of the dihadron
pair is

(pA + pB)2 = zAzB
⇣
Q2 + q2T

⌘
, (8)

which is of size Q2 as long as zA and zB are fixed and not too small.

C. The transverse momentum di↵erential cross section

Written in terms of a leptonic and a hadronic tensor, the cross section under consideration is

EAEB

d�AB

d3pAd3pB

=
↵2
em

8⇡3Q6
Lµ⌫W

µ⌫ (9)

where the leptonic tensor is

Lµ⌫ ⌘ lµl0⌫ + l0µl⌫ � gµ⌫ l0 · l , (10)

and the hadronic tensor is

Wµ⌫ ⌘ 4⇡3
X

X

h0|jµ(0)|pA, pB , XihpA, pB , X|j⌫(0)|0i�(4)(q � pA � pB � pX) , (11)

where j is the electromagnetic current, pX is the momentum of the unobserved part of the final state, and the
P

X

includes all sums and integrals over unobserved final states X. The structure functions are related to the hadronic
tensor through the decomposition

Wµ⌫(q, pA, pB) =

✓
�gµ⌫ +

qµq⌫

Q2
� ZµZ⌫

◆
WT + ZµZ⌫WL . (12)

where WT and WL are the unpolarized structure functions. The T and L subscripts denote transverse and longitudinal
polarizations respectively for the virtual photon. For our purposes, we may neglect polarization and azimuthally

𝑄 = 12 𝐺𝑒𝑉



31

• Factorization for 𝑞%/𝑄 ≈ 0:

• TMD ffs and evolution

Transverse Momentum Dependent 
Fragmentation Functions

𝑑𝜎 = 𝐻ef L𝑑"𝒌.%𝑑"𝒌"% 𝐷h/e 𝑧h, 𝑧h𝒌.% 𝐷i/f 𝑧i, 𝑧i𝒌"% 𝛿 " (𝒒% − 𝒌.% − 𝒌"%)

8

and ⌦ represents the convolution integral

(f ⌦ g)(z) =

Z 1

z

d⇣

⇣
f(z/⇣)g(⇣) . (26)

The “()+” in Eq. (25) denotes the usual plus-distribution. The “ASY” superscript on Eq. (24) symbolizes the
asymptotically small q2T/Q

2 limit for the cross section. The sum over q is a sum over all active quark flavors.

C. TMD ↵s and the small qT region

In the small transverse momentum limit of the cross section, the WL structure function becomes power suppressed.
The cross section in Eq. (16) is simply

d�AB

dzAdzBdqT
=

↵2
emzAzBqT

6⇡Q2
WT , (27)

and the structure function WT (or hadronic tensor) factorizes in a well known way into TMD fragmentation functions

WT =
8⇡3zAzB

Q2

X

q

cWT,q

Z
d2bT

(2⇡)2
e�ibT·qT

h
D̃HA/qD̃HB/q̄ + D̃A/q̄D̃B/q

i
, (28)

where

cWT,q = 6Q2e2
q
. (29)

The D̃H/q are the TMD fragmentation functions in transverse coordinate bT space. After evolution, the TMD ↵ for
a hadron H from quark q is

D̃H/q(z, bT ;µ, ⇣D) =
X

j

Z 1

z

dẑ

ẑ3
C̃j/q(z/ẑ, b⇤; ⇣D, µ)dH/j(ẑ, µb)

⇥ exp

8
<

:ln

p
⇣D
µb

K̃(b⇤;µb) +

Z
µ

µb

dµ0

µ

"
�(µ0; 1) � ln

p
⇣D
µ0 �K(µ0)

#
+ gH/j(z, bT ) +

1

2
gK(bT ) ln

⇣D
⇣D,0

9
=

; (30)

The j index runs over all quark flavors and includes gluons, and the functions dH/j(z, µb) are ordinary collinear ↵s
which are convoluted with coe�cient functions Cj/q derived from the the small bT limit of the TMDs. All perturbative

contributions, Cj/q, K̃, �, and �K are known by now to several orders in ↵s [61, 71].
However, non-perturbative functions also enter to parametrize the truly non-perturbative and intrinsic parts of the

TMD functions. These are gH/j , which is hadron and flavor dependent, and gK , which is independent of the nature
of hadrons and parton flavors and controls the non-perturbative contribution to the evolution. When combined in a
cross section ⇣DA ⇥ ⇣DB = Q4. Some common parametrizations used for phenomenological fits are

gH/j(z, bT ) = � 1

4z2
hK2

H/j,Tib2
T
, (31)

gK(bT ) = �1

2
g2b

2
T
. (32)

Perturbative parts of calculations are usually regulated in the large bT region by using, for example, the b⇤ prescription
with:

b⇤(bT ) =
bTq

1 +
�
bT /bmax

�2 , µb(b⇤) =
C1

b⇤
. (33)

While there are many ways to regulate large bT , and many alternative proposals for parametrizing the non-perturbative
TMD inputs hK2

H/j,Ti and g2, the above will be su�cient for the purpose of capturing general trends in the comparison
of large and small transverse momentum calculations in Sec. V.

Non-perturbative parts



Electron-Positron Annihilation

• Blue band: 
– from survey of 

non-perturbative fits

• Pink band:
– Large TM calculation, 

width from varying RG 
scale

• Green:
– Small 𝑞%/𝑄 → 0

asymptote

• No overlap in the transition 
region for smaller Q

𝑞%jkl ≈ 𝑄



Summary

• Evidence for tension with collinear factorization in 
three processes

• A handle on the collinear factorization at large 
transverse momentum is needed for complete 
treatment of transverse momentum spectrum


