

Nuclear Data for Isotope Production: A Program Manager's Perspective

Workshop on Applied Nuclear Data Activities (WANDA) January 23, 2019

Dr. Ethan Balkin

Isotope R&D Program Manager, DOE Isotope Program Office of Nuclear Physics, Office of Science, U.S. Department of Energy

Office of DOE Isotope Program Production and/or Science Development Sites

Stewarded Accelerator Facilities

Brookhaven National Laboratory Brookhaven Linac Isotope Producer (BLIP)

- The BLIP beam line directs protons up to 160 µA intensity to targets; parasitic operation with nuclear physics programs for more cost effective isotope production.
- Ac-225, Sr-82, Ge-68, Be-7, Cu-67, Y-86, Zn-65, Fe-52, Rb-83

Los Alamos National Laboratory Isotope Production Facility (IPF)

- Diversion of 100 MeV proton beam to target station.
- Irradiates targets while LANSCE operates for NNSA.
- Ac-225, Sr-82, Ge-68, Na-22, As-73, Se-72, Y-88, Si-32, Cd-109

Major Initiatives to Increase Isotope Production Capabilities

- (BLIP) Beam Raster System
 - Added equipment to
 - Raster the proton beam
 - Provide enhanced beam diagnostics
 - Enabled increase in beam current on target (greater isotope yields)
 - Maximum current increased from 125 to 140 μA by modification of proton pulses.
 - Actually achieved >160 µA
 - Current had been limited to <100 µA to prevent target failure
 - Lowered possibility of target failures

Integral of beam distribution is the same for both plots

Major Initiatives to Increase Isotope Production Capabilities (cont'd)

(IPF) Beam Transport Upgrade

- Project completed Summer 2017 (prior to IPF operating cycle)
- Enables increase in beam current from 230 μ A to 380 μ A
 - 65% increase in production yields
- Improves R&D capabilities and enhances facility reliability
 - Beam energy, current, profile, and emittance measurements

Office of Isotope Program Nuclear Data Needs or Science "Meiring's List"- Charged Particles

Nuclear Reactions for Proton Flux Monitoring:

Production cross sections are needed as a function of particle energy. Care must be taken in the 80-200 MeV range to address potential secondary neutron related concerns.

Nuclear reaction	Energy range	
^{nat} Nb(p,4n) ⁹⁰ Mo	Up to 200 MeV	
^{nat} Cu(p,xn) ^{62,64} Zn	Up to 200 MeV	
^{nat} Ti(p,x) ⁴⁸ V	Up to 200 MeV	

Excitation Functions for Isotope Production:

Production cross sections are needed as a function of particle energy.

Isotope	Target	Incident	Measurement type	Energy range
²³⁶ Np	²³⁵ U	d	Excitation functions for production	Up to 50 MeV
		d	of 230m,230gNp Excitation functions for production	Up to 50 MeV
	²³⁶ U	р	Excitation functions for production	Up to 30 MeV
		р	Excitation functions for production	Up to 30 MeV
	²³⁶ U	d	Excitation functions for production of ^{236m,236g} Np	Up to 50 MeV
		d	Excitation functions for production of co-produced impurity: 234,235,237,238Np	Up to 50 MeV
	²³⁸ U	р	Excitation functions for production of ^{236m,236g} Np	Up to 50 MeV
		р	Excitation functions for production of co-produced impurity: 234,235,237,238,239Np	Up to 50 MeV
^{93m} Nb	⁹⁴ Zr	р	Excitation function for production of 93mNb	Up to 70 MeV
		р	Excitation functions for production of co-produced impurities: ^{91g,92g,93g, ⁹⁴⁸Nb}	Up to 70 MeV
²⁰² Pb	²⁰³ TI	р	Excitation functions for production of 202m,202gPb	Up to 200 MeV
		р	Excitation functions for production of co-produced impurities: 198,199,200,201,203Pb	Up to 200 MeV
	²⁰⁵ TI	р	Excitation functions for production of 202m,202gPb	Up to 200 MeV
		р	Excitation functions for production of co-produced impurities: 198,199,200,201,203,204,205pb	Up to 200 MeV
²⁰⁵ Pb	²⁰⁶ Pb	р	Excitation functions for production of ²⁰⁵ Bi, ²⁰⁵ Pb	Up to 200 MeV
	²⁰⁶ Pb	р	Excitation functions for production of co-produced impurities: 198,199,200,201,202,203,204,205,206,207Bi	Up to 200 MeV
	²⁰⁴ Pb	р	Excitation functions for production of co-produced impurities: 198,199,200,201,202,203,204Bi	Up to 200 MeV
	²⁰⁷ Pb	р	Excitation functions for production of ²⁰⁵ Bi and co-produced impurities: 198,199,200,201,202,203,204,206,207Bi	Up to 200 MeV
	²⁰⁸ Pb	р	Excitation functions for production of ²⁰⁵ Bi and co-produced impurities: 198,199,200,201,202,203,204,206,207,208Bi	Up to 200 MeV

tope	Target	Incident particle	Measurement type	Energy range
¹ Ce	^{nat} La	р	Excitation function for production of ¹³⁴ Ce	Up to 200 MeV
		р	Excitation functions for production of co-produced impurities: 132,133,133,137,139Ce	Up to 200 MeV
Se	⁷⁵ As	р	Excitation function for production of ⁷² Se	Up to 100 MeV
		р	Excitation functions for production of co-produced impurities: ^{70,71,73,75} Se	Up to 100 MeV
Sc	⁵⁰ Ti	р	Excitation function for production of 47Sc	Up to 50 MeV
		р	Excitation functions for production of co-produced impurities: 43,44,46,48,49Sc	Up to 50 MeV
Cu	⁷⁰ Zn	p	Excitation function for production of 67Cu	Up to 50 MeV
		р	Excitation functions for production of co-produced impurities: 61,62,64,66Cu	Up to 50 MeV
Śr	⁸⁶ Y	р	Excitation function for production of 86y	Up to 50 MeV
		р	Excitation functions for co-produced impurities: ^{87g,87m,88} Y from ^{87,88} Sr	Up to 50 MeV
те	^{nat} Sb	р	Excitation functions for production of ^{119m,119g} Te	Up to 100 MeV
		р	Excitation functions for production of co-produced impurities: ^{116,117,118,121m,121g,123m} Te	Up to 100 MeV
	¹²¹ Sb	р	Excitation functions for production of ^{119m,119g} Te	Up to 100 MeV
		р	Excitation functions for production of co-produced impurities: ^{116,117,118,121m,121g,123m} Te	Up to 100 MeV
^m Sn	^{nat} Sb	р	Excitation function for production of ^{117m} Sn	Up to 100 MeV
		р	Excitation functions for production of co-produced impurities: ^{113,119m,} ^{121m,1218} Sn	Up to 100 MeV
	¹²¹ Sb	р	Excitation function for production of ^{117m} Sn	Up to 100 MeV
		р	Excitation functions for production of co-produced impurities; ^{113,119m} Sn	Up to 100 MeV
⁵ La	^{nat} Ba	р	Excitation function for production of ¹³⁵ La	Up to 100 MeV
		р	Excitation functions for production of co-produced impurities: ^{131,132,133,137} La	Up to 100 MeV
_				

Isotope	Target	Incident particle	Measurement type	Energy range
	^{135,136} B a	р	Excitation function for production of ¹³⁵ La	Up to 50 MeV
		р	Excitation functions for production of co-produced impurities: ^{131,132,133,134} La	Up to 50 MeV
¹⁸⁶ Re	¹⁸⁹ Os	р	Excitation function for production of 186Re	Up to 50 MeV
		p	Excitation functions for production of co-produced impurities: ^{181,182m} , ^{182g,183,184,184g,188m,188g,189} Re as well as contributing pre-cursers such as ^{181,182,183} Os and ^{181,182,183} Ir	Up to 50 MeV

Other nuclear data needs for intermediate energy production of medical isotopes are listed below. Excitation functions are needed up to 100 MeV (preferably up to 200 MeV) for production of the primary isotope and for all co-produced isotopic impurities. In each case the main production nuclear reaction is indicated but it should be noted that in some cases more than one nuclear reaction contribute to the production of a particular isotope or isotopic impurity. The needs listed below are considered important but of slightly lower priority.

Non-standard β^+ emitters	SPECT radionuclides and generator	Therapeutic radionuclides
⁵⁵ Mn(p,4n) ⁵² Fe	parents	⁶⁸ Zn(p,2p) ⁶⁷ Cu
⁵⁹ Co(p,3n) ⁵⁷ Ni	¹²⁴ Xe(p,pn) ¹²³ Xe	107 Ag(p, α n) 103 Pd
⁶⁸ Zn(p <i>,</i> α n) ⁶⁴ Cu	¹²⁴ Xe(p,2p) ¹²³ I	²³² Th(p,x) ²²⁵ Ac
⁷¹ Ga(p,4n) ⁶⁸ Ge	⁴⁵ Sc(p,2n) ⁴⁴ Ti	
⁷⁵ As(p,3n) ⁷³ Se	⁶⁹ Ga(p,2n) ⁶⁸ Ge	
⁸⁵ Rb(p,3n) ⁸³ Sr	^{nat} Br(p,x) ⁷² Se	
⁸⁸ Sr(p,3n) ⁸⁶ Y		
¹²⁵ Te(p,2n) ¹²⁴ Te		

Office of Isotope Program Nuclear Data Needs or Science "Meiring's List"- Photons

Excitation Functions for Isotope Production:

Production cross sections are needed as a function of photon energy.

Nuclear reaction	Photon energy range	
⁴⁸ Ti(γ,p) ⁴⁷ Sc	Up to 50 MeV	
⁴⁸ Ti(γ,pn) ⁴⁶ Sc	Up to 50 MeV	
⁴⁸ Ca(γ,n) ⁴⁷ Ca	Up to 50 MeV	
⁴⁸ Ca(γ,p) ⁴⁷ K	Up to 50 MeV	
⁶⁸ Zn(γ,p) ⁶⁷ Cu	Up to 50 MeV	
⁶⁸ Zn(γ,pn) ⁶⁶ Cu	Up to 50 MeV	
⁶⁸ Zn(γ,pn) ⁶⁶ Cu	Up to 50 MeV	
⁷⁷ Se(γ,p) ⁷⁶ As	Up to 50 MeV	
⁷⁸ Se(γ,p) ⁷⁷ As	Up to 50 MeV	
⁷⁸ Se(γ,pn) ⁷⁶ As	Up to 50 MeV	
¹⁸⁷ Os(γ,p) ¹⁸⁶ Re	Up to 50 MeV	
¹⁸⁹ Os(γ,p) ¹⁸⁸ Re	Up to 50 MeV	
¹⁹⁰ Os(γ,p) ¹⁸⁹ Re	Up to 50 MeV	
¹⁹⁶ Pt(γ,p) ¹⁹⁵ Ir	Up to 50 MeV	
¹⁹⁶ Pt(γ,n) ^{195m} Pt	Up to 50 MeV	
¹⁹⁷ Au(γ,pn) ^{195m} Pt	Up to 50 MeV	
¹⁹⁷ Au(γ,n) ¹⁹⁶ Au	Up to 50 MeV	
¹⁶² Dy(γ,p) ¹⁶¹ Tb	Up to 50 MeV	
¹⁶² Dy(γ,pn) ¹⁶⁰ Tb	Up to 50 MeV	
²²⁶ Ra(γ,n) ²²⁵ Ra	Up to 50 MeV	
²²⁶ Ra(γ,2n) ²²⁴ Ra	Up to 50 MeV	

Activation of Converter Materials:

Production cross sections are needed as a function of photon energy for all activation products, with the highest priority on the major gamma dose drivers (both long-lived and short-lived).

Converter materials	Photon energy range
Tungsten	Up to 50 MeV
Tantalum	Up to 50 MeV
Gold	Up to 50 MeV
Copper	Up to 50 MeV
Stainless steel	Up to 50 MeV
Aluminum	Up to 50 MeV
Magnesium	Up to 50 MeV
Lead	Up to 50 MeV
Rhenium	Up to 50 MeV
Platinum	Up to 50 MeV

Office of Isotope Program Nuclear Data Needs or Science "Meiring's List"- Neutrons

Nuclear Reactions for Fast Neutron Flux Characterization:

Production cross sections are needed as a function of neutron energy. Note: Some data exist for some reactions on these targets. Notwithstanding, confirmation measurements are still needed.

Nuclear reaction	Energy range
²⁰⁹ Bi(n,3n) ²⁰⁷ Bi	Up to 200 MeV
²⁰⁹ Bi(n,4n) ²⁰⁶ Bi	Up to 200 MeV
²⁰⁹ Bi(n,5n) ²⁰⁵ Bi	Up to 200 MeV
²⁰⁹ Bi(n,6n) ²⁰⁴ Bi	Up to 200 MeV
^{nat} Lu(n,xn) ¹⁷³ Lu	Up to 200 MeV
^{nat} Lu(n,xn) ¹⁷² Lu	Up to 200 MeV
^{nat} Lu(n,xn) ¹⁷¹ Lu	Up to 200 MeV
^{nat} Lu(n,xn) ¹⁷⁰ Lu	Up to 200 MeV
^{nat} Lu(n,xn) ¹⁶⁹ Lu	Up to 200 MeV
¹⁶⁹ Tm(n,3n) ¹⁶⁷ Tm	Up to 200 MeV
¹⁶⁹ Tm(n,4n) ¹⁶⁶ Tm	Up to 200 MeV
¹⁶⁹ Tm(n,5n) ¹⁶⁵ Tm	Up to 200 MeV

Fast Neutron Induced Reactions:

Isotope Production Via Threshold Reactions. Production cross sections are needed as a function of neutron energy.

Nuclear reaction	Energy range
²³² Th(n,x) ²²⁵ Ac	Up to 200 MeV
²³² Th(n,x) ²²⁷ Ac	Up to 200 MeV
³⁶ S(n,x) ³² Si	Up to 200 MeV
^{nat} K(n,x) ³² Si	Up to 200 MeV
³⁷ Cl(n,x) ³² Si	Up to 200 MeV
³⁵ Cl(n,x) ³² Si	Up to 200 MeV
⁶⁸ Zn(n,x) ⁶⁷ Cu	Up to 200 MeV
⁷⁰ Zn(n,α) ⁶⁷ Ni	Up to 200 MeV
⁵⁰ Ti(n,x) ⁴⁷ Sc	Up to 200 MeV
⁵⁰ Ti(n, α) ⁴⁷ Ca	Up to 200 MeV
²²⁶ Ra(n,2n) ²²⁵ Ra	Up to 200 MeV

Office of Isotope Program Nuclear Data Needs or Science "Meiring's List"- Neutrons

Other nuclear data needs for fast neutron production of medical isotopes are listed below. These measurements are also considered important but of slightly lower priority. Excitation functions are typically needed up to 200 MeV.

³² S(n,p) ³² P	⁶⁷ Zn(n,p) ⁶⁷ Cu	¹⁴⁹ Sm(n,p) ¹⁴⁹ Pm	¹⁶¹ Dy(n,p) ¹⁶¹ Tb	¹⁷⁵ Lu(n,p) ¹⁷⁵ Yb
⁴⁷ Ti(n,p) ⁴⁷ Sc	⁸⁹ Y(n,p) ⁸⁹ Sr	¹⁵³ Eu(n,p) ¹⁵³ Sm	¹⁶⁶ Er(n,p) ^{166m,166g} Ho	¹⁷⁷ Hf(n,p) ^{177m,177g} Lu
⁶⁴ Zn(n,p) ⁶⁴ Cu	¹⁰⁵ Pd(n,p) ¹⁰⁵ Rh	¹⁵⁹ Tb(n,p) ¹⁵⁹ Gd	¹⁶⁹ Tm(n,p) ¹⁶⁹ Er	

Low-Energy Neutron Reactions: Isotope Production Via Reactors Energy-resolved cross sections as well as effective cross sections for both thermal neutrons and epi-thermal neutrons are needed for production at U.S. based reactors (e.g. HFIR and ATR).

Nuclear reaction	Nuclear reaction	Nuclear reaction
Data for production of ²²⁹ Th and other isotopes	Data for SHE target isotopes production	Data for ²⁵² Cf production
$^{227}\text{Ra}(n,\gamma)^{228}\text{Ra}$ - confirmation measurement needed	²⁴⁸ Cm(n,γ) low energy resonances ²⁴⁹ Bk(n,γ)	²⁴⁵ Cm(n,γ)
²²⁸ Ra(n,y) ²²⁹ Ra	²⁵⁰ Cf (n,γ) and ²⁵⁰ Cf (n,f)	²⁴⁷ Cm(n,γ)
²²⁸ Ac(n,y) ²²⁹ Ac	$^{251}Cf(n,\gamma)$ and $^{251}Cf(n,f)$ – first resonance	²⁴⁸ Cm(n,γ)
227 Th(n, γ) ²²⁸ Th - confirmation measurement needed		²⁴⁹ Bk(n,γ)
$^{228}\text{Th}(n,\gamma)^{229}\text{Th}$ - confirmation measurement needed		²⁵⁰ Cf(n,g) and ²⁵⁰ Cf (n,f)
229 Th(n, γ) 230 Th - confirmation measurement needed		²⁵¹ Cf(n,g) and ²⁵¹ Cf (n,f)
²²⁹ Th(n,fission) - confirmation measurement needed		²⁵² Cf(n,X) - resonance near 1eV in particular
²²⁷ Th(n,fission) - confirmation measurement needed		
$^{187}W(n,\gamma)^{188}W$ - reported value not reliable		
¹³³ Ba(n,γ) ¹³⁴ Ba - confirmation measurement needed		
107 Ag(n, γ) 108 Ag \rightarrow 108 Cd(n, γ) 109 Cd - confirmation measurements needed		

- Representatives from BNL, LANL, and LBNL did a down select and prioritization on "Meiring's List" for a comprehensive nuclear data generation plan specific to isotope production.
- Multi-year effort involving all three sites
 - Will establish a robust nuclear data capability across the 0 – 200 MeV proton energy range, that can continue to be utilized into the future
 - Will establish identical counting capabilities at each site
 - All sites will evaluate each irradiated sample ensuring triplicate data sets

- Targetry:
 - Fabrication
 - Thin films vs Full thickness
 - Trade capabilities (i.e. pellet pressing, foil rolling, machining, welding, etc.)
 - Design
 - Thermal modeling based on power deposition
- Instrumentation/Data Acquisition:
 - Multiple measurements vs. single data points
 - Uniformity of counting statistics
- What am I missing? What would help you?

- DOE IP has and will continue to have significant nuclear data needs requiring investment from it's R&D portfolio.
- Our investments will have a direct impact on the products and services that we are able to provide.
- If you have target material needs (i.e. stable or radioisotopes) please contact either your federal program manager, the NIDC for a quote, or me for further discussion. We are implementing a strategy to better meet the needs of the nuclear data community.

