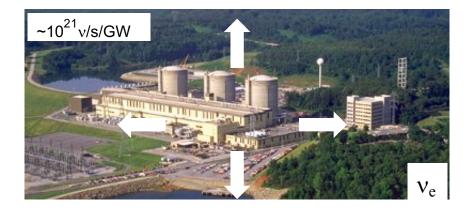


Member of the US Nuclear Data Program

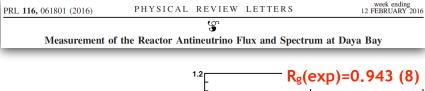
Novel Approach for Improving Antineutrino Spectra Predictions

kondev@anl.gov

Nuclear Physics


NA-22

WANDA, George Washington University, Washington DC, January 22-24, 2019

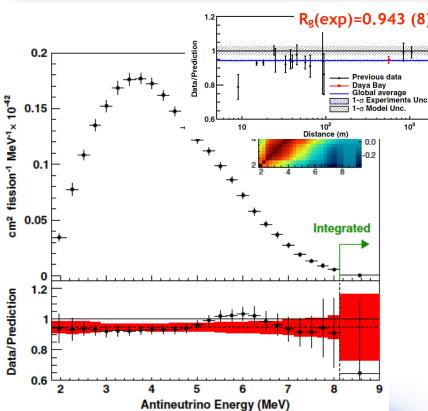

Office of Science

Introduction

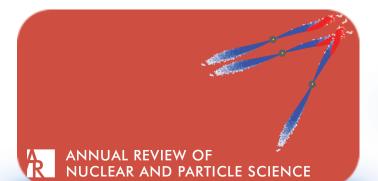
compelling physics

- physics beyond the Standard Model
- astrophysics supernovae core collapse & big bang nucleosynthesis
- neutrinoless double beta decay
- reactor anomaly & oscillations

applications


detection of fissile activities from peaceful & military programs *remote* safeguards, monitoring and fission inventory of nuclear reactors

The New York Times


How to Spot a Nuclear Bomb Program? Look for Ghostly Particles

By Kenneth Chang

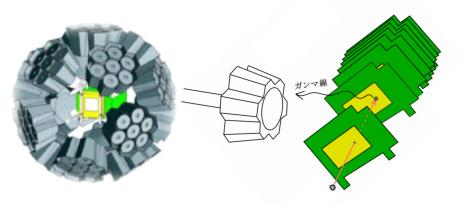
March 27, 2018

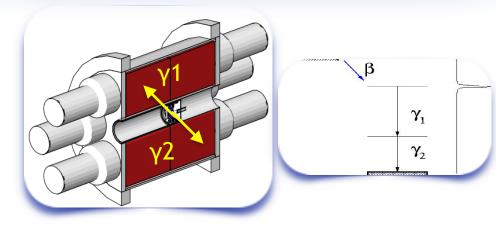
Introduction - cont.

Reactor Neutrino Spectra

Anna C. Hayes¹ and Petr Vogel²

vol. 66: 219-244 (2016)


Quantity	Туре	ΔJ^{π}	Uncertainty
Unknown branching and J^{π}	Allowed and forbidden	All	50%
Finite size correction	Allowed	1+	50%
Finite size correction	Forbidden	0 ⁻ , 1 ⁻ , 2 ⁻	100%
Weak magnetism	Allowed	1+	20%
Weak magnetism	Forbidden	0-	None
Weak magnetism	Forbidden	2-	20%
Weak magnetism	Forbidden	1-	25%
Shape factor	Allowed	1+	None
Shape factor	Forbidden	2-	None
Shape factor	Forbidden	0-, 1-	30%
Fission yields	Allowed and forbidden	All	10%
Missing spectra	Allowed and forbidden	All	50%


• key needs: improved experimental & evaluated nuclear physics data

Experimental Approaches

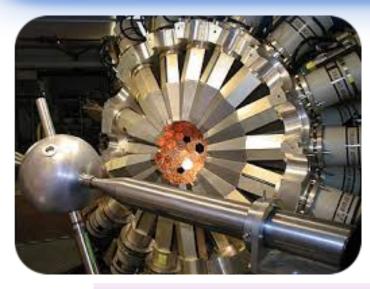
discrete β-γ-γ spectroscopy with HPGe detectors

Total Absorption Gamma-ray Spectroscopy calorimetry with Nal detectors

Pros

- determination of detailed decay scheme
- state-of-the-art detector equipment
 - problematic in the past current deficiency in ENSDF/ENDF

Cons


 reduced HPGe efficiency for highenergy γ rays

Pros

- large γ-ray singles efficiency
 Cons
- low energy resolution and resolving power
- must know details of the decay scheme often this is not the case simulations
- complicated unfolding procedure often non-unique solutions exist - unreliable uncertainties

Decay Spectroscopy with Gammasphere

Combine GAMMASPHERE the most powerful gamma-ray spectrometer in the WORLD with the unique beam capabilities of CARIBU (all fission products are available as high purity beams - no stopovers for refractory elements)

100 HpGe detectors with BGO shields in a close ($\sim 4\pi$) geometry

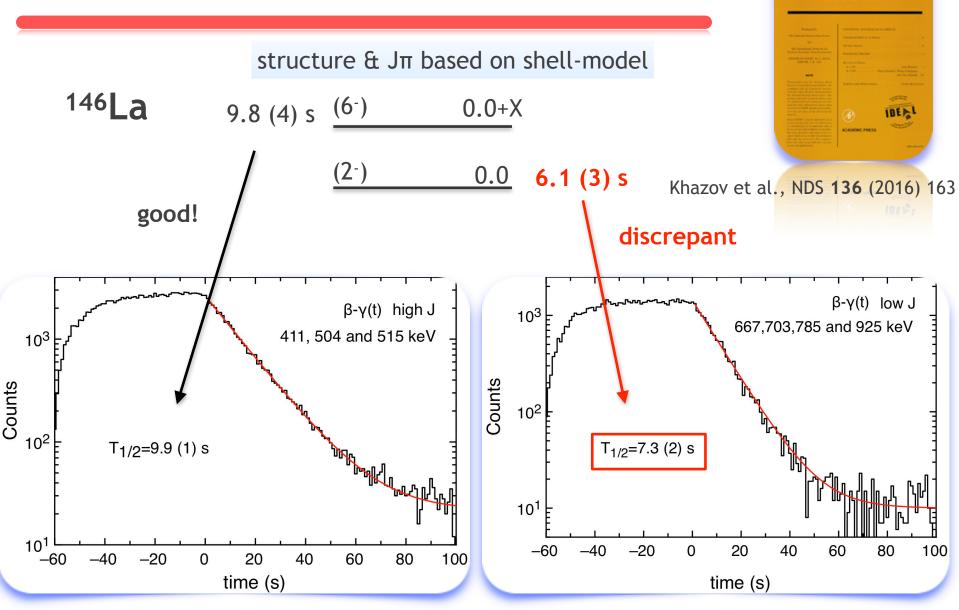
Advantages

- discrete & calorimetry γ-ray spectroscopy techniques within a single device
- high granularity & resolving power ($\Delta E\gamma = 2 \text{ keV}$, P/T~60% and $\epsilon_{\gamma} \sim 85\%$) ability to resolve week γ -ray cascades (10⁻⁵-10⁻⁶%) unprecedented sensitivity!
- establish complete decay schemes angular correlations for transition multipolarities & Jπ assignments - end-game in nuclear spectroscopy

Commission Experiment - Dec. 17-21, 2018

new Decay Data Station at Gammasphere - commissioned in December 17-22, 2018 target chamber (WUSL), moving tape (LSU) and B- particle detector arrays (ANL)

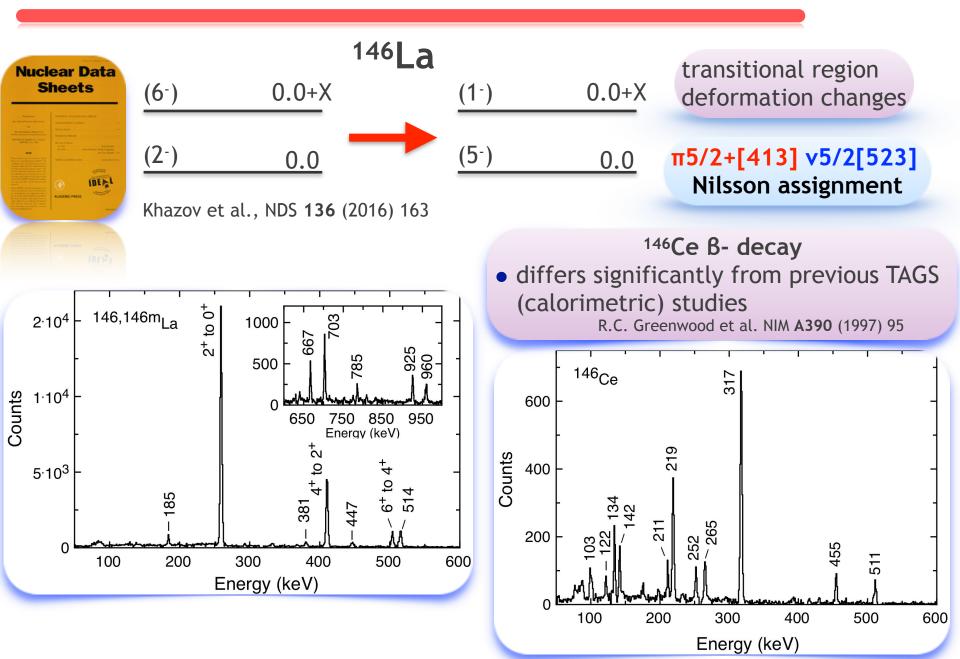
- flexible selection of different growth & decay cycles
- increased sensitivity for fast-decaying nuclei (down to 100s of ms); resolving isomers



HEART - Hexagonal Array for Triggering

 6 EJ-204 plastic scint. & 12 SiPM
 ε_B=75 (2)% from β-γ singles & coin.
 determine the direction of β part.

powerful γ-γ-β-t coincidence device


First Results - 144La & 146,146mLa

Nuclear Data Sheets

gating on selecting γ rays associated with the low- and high-spin B-decaying states

First Results - cont.

What Next?

a list of ~30 nuclides, based on recent recommendations by IAEA-NDS

International Atomic Energy Agency Nuclear Data Services Provided by the Nuclear Data Section

INDC(NDS)-0676 Distr. EN, ND

INDC International Nuclear Data Committee

Technical Meeting on "Nuclear Data for Anti-neutrino Spectra Calculations and Their Applications", April 2019 (tentative)

 3 days allocated in March 2019 - ^{102,102m}Nb and ^{104,104m}Nb √ role played by deformation
 new proposals to the ATLAS-PAC for campaigns in FY19 & FY20

Conclusions & Outlook

Gammasphere was converted to a powerful spectrometer for beta-decay studies - state-of-the-art decay spectroscopy with CARIBU beams

 compelling physics - structure of neutron-rich nuclei into FP region - great discovery potential & detailed spectroscopy studies - in many cases better compared to what the other RIB facilities can offer
 high-value data for applications - antineutrino spectra, decay heat, fission yields, safeguards, etc.

 new decay data station at Gammsphere was successfully commissioned in December 2018 - first data taken on ¹⁴⁴La & ^{146,146m}La (¹⁴⁶Ba and ¹⁴⁶Ce) notable differences with previous studies & evaluations - new physics!

 targeted experiments for nuclei on the IAEA list of priority nuclides - several experimental campaigns planned during FY19 and FY20

 ANL Decay Data Factory: moving GS to the new LE area (close to CARIBU) no interference with ATLAS operation - running continuously for 6-10 months

 a wealth of new data for both science & applications
 a new way of data storage, analysis & dissemination

Collaborators

Argonne National Laboratory:

P. Copp, M.P. Carpenter, G. Savard, K. Auranen, J. Clark, T. Lauritsen, J. Lee, D. Santiago-Gonzales, D. Seweryniak, S. Stolze, S. Zhu, J. Wu, M. Oberling, J. Anderson, R. Knaak, J. Roher, B. DiGiovane

LSU: S. Marley, E. Zganjar, G.E. Morgan, G. Willson

WUSL: W. Reviol, D. Sarantites

US Naval Academy: D.J. Hartley, D. Ayangeakaa

LOUISIANA STATE UNIVERSITY

