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Neutron Thermalization

Using first Born approximation combined with Fermi pseudopotential, it can
be shown that the double differential scattering cross section has the form

d?c 1 |E
dQdE’ 4z \ E

The scattering law S(k,w) is composed of two parts

{OeonS (K@) + Ty oonSs (K, ) }

incoh

S(x,w) =S, (k,0)+ S, (k,w)

Van Hove’s space-time formulation

I(#.1) =[G (F.t)exp ik -7 )

S(R,0) = [ [ 6(r1)e'" drdt

where G(7,t) is the dynamic pair correlation function and can be expressed
in terms of time dependent atomic positions.



Since 1960s
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The scattering law (TSL) is the Fourier transform of a Gaussian correlation
function

S.(a, p) = % je—iﬂte—ﬂf(t)dt

i o(f) - /2
7(t) = Iﬁsmh(ﬂ/Z)[_e “ledp

o(p) — density of states (e.g., phonon frequency distribution)



Thermal Scattering Law Analysis

OKey development in the last 20 years is
the use of atomistic simulations methods
to support the evaluation process

M Produce data necessary to calculate the TSL including

0 DOS for evaluation of TSL
O Direct access to TSL using correlation analysis

ackage

imulation




Thermal Scattering Law Analysis
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Quantum mechanical ab initio (i.e. first principle) methods are applied in
senerating the thermal neutron scattering cross sections of moderators and
reflectors that are of mferest in muclear technology. _Specifically, this work
focuses on graphite and beryllium. In both cases, the ab initio code VASP
and the lattice dynamics code PHONON were used to generte the
dispersion telations, and the phonon frequency distributions (density of
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1. Introduction

D to advances in cougtational power. the possibiity now exists to perform detaiked quaim
tecleascal ab initio (i, frst praciple) simniations of stomec systenns.  These simmlations are cunenily
used in fiekds such as physics, chemusry, and maserialsscience fo chiaracterize and predict the beliavioe of
new and exotic matenials (1), Using this approach. i s possible to establish the equilibrinm atomic
positions of 2 given matenal and predict the vancus poperties of the matenal starting from such basic
mformtion as the coondinates of he atous. - Consequently, ab matio sinmibtions seek 1o gain in
the bonxling forces i the material, which are usually variations of the Coulowb force that result in the
formation of soase, covalent, molecular, and van

o tucler reaclor desgn.the effct of soass cor tolsular bonding becorues portnt s the
pentrons slow down and ener the hemal (or slow) region (neutron etergy = 1 eV).  The mieroscopic
inderaction (e, absorpicn, scalering. efe.) of slow peutrons wilin the rexctor cove defines the theml
Deutton enesgy spectn, which affects several global (acroscopic) propertis such as eritcalty, and
safety axd feedbock response.  Therefore, the accuracy of the thermal nevtron scaftering cross sections
that e wsed in reactor core design cakulations are important for operatimg the renctor m an optimiz!
nd safe mamer

n the past, the theral neutron scaftering cross sections were derived fiom structure dynamics models
that were fitted to experimental data in crder to quantfy the forces between the atoms and calculate the
required excitation demsify of tafes (2], However, by wsing the ab mfio approach. the ability nor exists
1o treat nunich lauger systems of atons, and amive af more sccurate and congplete dynamacal models fiom
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Quantum mechanical ab initio (i.e., first principle) methods are applied in
generating the thermal neutron scattering cross sections of moderators and
reflectors that are of interest in nuclear technology.  Specifically, this work
focuses on graphite and beryllinm.  In both cases, the ab initio code VASP
and the lattice dymamics code PHONON were used 10 generate the oo H . 5 . . FEE)
dispersion relations, and the phonon frequency distributions (density of Ayman I Hawari. “Modern Techniques for Inelastic Thermal Neutron Scattering Analysis.
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various femperatres.  The use of the ab initio approach represents a major
departure from previously applied methods, which depended mainly on
fitting simpler dynamical models to expermmental data to amive at the
phonon frequency distmbutions. In this case. much more complicated
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Evaluation Approach

0 Construct atomistic model of a material

O Verify ability of model to reproduce physical
properties of the material (equilibrium
conditions)

B Density, thermal expansion, thermal conductivity,...
B Ergodic behavior, correlations,...

O Generate input (DOS, ...) for TSL calculations

O Calculate TSL and produce thermal scattering
Cross sections

B Check consistency of results with computational
assumptions/models

B Compare to experimental data




Thermal Scattering Cross-Sections

Evaluation DFT /LD

Optimize the
system structure
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Thermal Scattering Cross-Sections

Evaluation MD/QM
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Density of States assumption

N Y Thermal Scattering - Thermal Scattering
Jo Law S(a, B) Cross Section




Material

Beryllium metal

ENDF Library Name

tsl-Be-metal.endf

ENDEF/B-VIII TSL Evaluations

Evaluation

Basis
DFT/LD

Institution

Beryllium oxide (beryllium) tsl-BeinBeO.endf DFT/LD NCSU
Beryllium oxide (oxygen) tsl-OinBeO.endf DFT/LD NCSU
Light water (hydrogen) tsl-HinH20.endf MD CAB
Light water ice (hydrogen) tsl-HinIcelh.endf DFT/LD BAPL
Light water ice (oxygen) tsl-Oinlcelh.endf DFT/LD BAPL
Heavy water (deuterium) tsl-DinD20.endf MD CAB
Heavy water (oxygen) tsl-0inD20.endf MD CAB
Polyl_nethyl Methacrylate tsl-HINC502H8. endf MD NCSU
(Lucite)

Polyethylene tsl-HinCH2.endf MD NCSU
Crystalline graphite tsl-graphite.endf MD NCSU
Reactor graphite tsl-reactor-graphite- MD NCSU
(10% porosity) 10P.endf

Reactor graphite tsl-reactor-graphite- MD NCSU
(30% porosity) 30P.endf

Silicon carbide (silicon) tsl-CinSiC.endf DFT/LD NCSU
Silicon carbide (carbon) tsl-SiinSiC.endf DFT/LD NCSU
Silicon dioxide (alpha phase) tsl-SiO02-alpha.endf DFT/LD NCSU
Silicon dioxide (beta phase) tsl-SiO2-beta.endf DFT/LD NCSU
Yttrium hydride (hydrogen) tsl-HinYH2.endf DFT/LD BAPL
Yttrium hydride (yttrium) tsl-YinYH2.endf DFT/LD BAPL
Uranium dioxide (oxygen) tsl-0OinUO2.endf DFT/LD NCSU
Uranium dioxide (uranium) tsl-UinUO2.endf DFT/LD NCSU
Uranium nitride (nitrogen) tsl-NinUN.endf DFT/LD NCSU
Uranium nitride (uranium) tsl-UinUN.endf DFT/LD NCSU




Material

Beryllium metal

ENDF Library Name

tsl-Be-metal.endf

ENDEF/B-VIII TSL Evaluations

Evaluation

Basis
DFT/LD

Institution

Beryllium oxide (beryllium) tsl-BeinBeO.endf DFT/LD NCSU
Beryllium oxide (oxygen) tsl-OinBeO.endf DFT/LD NCSU
Light water (hydrogen) tsl-HinH20.endf MD CAB
Light water ice (hydrogen) tsl-HinIcelh.endf DFT/LD BAPL
Light water ice (oxygen) tsl-Oinlcelh.endf DFT/LD BAPL
Heavy water (deuterium) tsl-DinD20.endf MD CAB
Heavy water (oxygen) tsl-0inD20.endf MD CAB
Polyl_nethyl Methacrylate tsl-HiNC502H8. endf MD NCSU
(Lucite)

Polyethylene tsl-HinCH2.endf MD NCSU
Crystalline graphite tsl-graphite.endf MD NCSU
Reactor graphite tsl-reactor-graphite- MD NCSU
(10% porosity) 10P.endf

Reactor graphite tsl-reactor-graphite- MD NCSU
(30% porosity) 30P.endf

Silicon carbide (silicon) tsl-CinSiC.endf DFT/LD NCSU
Silicon carbide (carbon) tsl-SiinSiC.endf DFT/LD NCSU
Silicon dioxide (alpha phase) tsl-SiO2-alpha.endf DFT/LD NCSU
Silicon dioxide (beta phase) tsl-SiO2-beta.endf DFT/LD NCSU
Yttrium hydride (hydrogen) tsl-HinYH2.endf DFT/LD BAPL
Yttrium hydride (yttrium) tsl-YinYH2.endf DFT/LD BAPL
Uranium dioxide (oxygen) tsl-0OinUO2.endf DFT/LD NCSU
Uranium dioxide (uranium) tsl-UinUO2.endf DFT/LD NCSU
Uranium nitride (nitrogen) tsl-NinUN.endf DFT/LD NCSU
Uranium nitride (uranium) tsl-UinUN.endf DFT/LD NCSU




Graphite
Ideal “crystalline” graphite ’ %

consists of planes (sheets) of | «  Hexagonal Structure
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hexagonal lattice. Covalent 5 %a—a e a=b=246A
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Reactor/Nuclear graphite
consists of ideal graphite
crystallites (randomly oriented)
in a carbon binder. It is highly
porous structure with porosity
level ranging between 10% and
30%.

Lo IR
Nuclear Graphite (SEM at NCSU)
Density =1.5-1.8 g/cm?3




Reactor/Nuclear Graphite
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Liquid FLiBe

O Eutectic with a
mixture of 2:1 ratio
of LiF and BeF2

OMelting Point: 732K
Boiling Point:1703K

ODFT and MD
analysis (with QM
corrections)

OTSL evaluation

between 750K and
1500K




Carbon-Carbon Composite

O Carbon fiber embedded in a
carbon matrix.

ODensity may vary in the
range of 1.6 to 2.0 g/cm3.

OMD analysis (with QM
corrections)

OTSL evaluation




O Current major
facilities/capabilities
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(under testing)

B Neutron activation
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B In-pool irradiation testing
facilities

O Current projects
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source (under testing)
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Neutron Thermalization

Using first Born approximation combined with Fermi pseudopotential, it can
be shown that the double differential scattering cross section has the form

d?c 1 |E
dQdE’ 4z \ E

The scattering law S(k,w) is composed of two parts

{Gcth (K, 0) + TS, (K, a))}

S(x,w) =S, (k,0)+ S, (k,w)

Van Hove’s space-time formulation 2 1St
1(R.1) = [ G(7.1)exp (i&-7 YiF Century

S(R,0) = [ [ 6(r1)e'" drdt

where G(7,t) is the dynamic pair correlation function and can be expressed
in terms of time dependent atomic positions.
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! Project Configuraton
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Temperatures X

Number of Temperatures 3
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Crystal Structure
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Lattice Constant A ()
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Organize New Open Select
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1 /Coherent Elastic (DBW Matrix)
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FLASSH Code Features

NJOY (LEAPR and FLASSH
THERMR)
Yes No

Incoherent

approximation

Cubic approximation Yes No

One atom per unit Yes No

(o] ]|

Short Collision Time Yes No

(SCT) Approximation

Coherent elastic Approximate (and hard Exact formulation (any

scattering coded for selected material based on user
materials) input)

Integral against o Numerical Analytical (optional

numerical)
o,p grid User input Automatic (optional user
input)

Parallel computing N/A Yes

Input syntax check N/A Yes

Graphical user N/A Yes

interface
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FILASSH

Be Scattering Law S(«, f8)

0.1 -

0.001

1 |—— Experiment B =275
1 |- - - LEAPR (incoherent approximation)
] —— FLASSH

0.01

L ' ' L ' ' L
0.1 1 10



Summary

New NEUP project (Nuclear Data) to evaluate TSL for FLiBe,
C-C composites, and Nuclear Graphite

Modern predictive methods for thermal neutron cross
section calculations based on the use of atomistic
simulations

B Ab initio lattice dynamics

B Molecular dynamics (ab initio and classical)
O New materials
O All states of matter (solid, liquid, gas)
O Imperfect structure

FLASSH is a new thermal scattering analysis platform that
uses a generalized theoretical approach for TSL
calculations.

Developed a holistic and coupled computational-
experimental approach for investigating TSL development.
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