

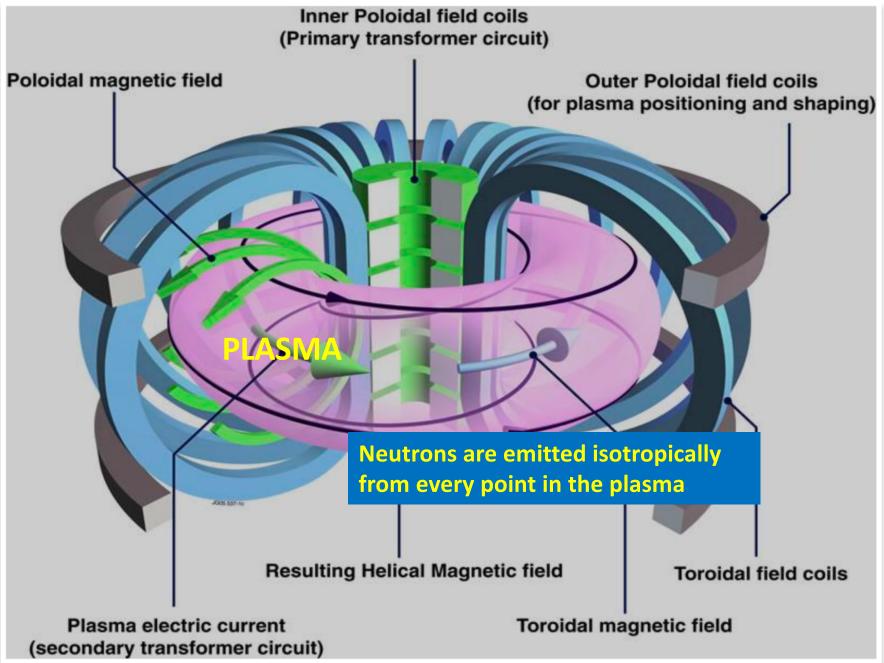
Fusion Nuclear Science Facility – Nuclear Analysis and Data are Central to its Design and Success

C. E. Kessel, ORNL

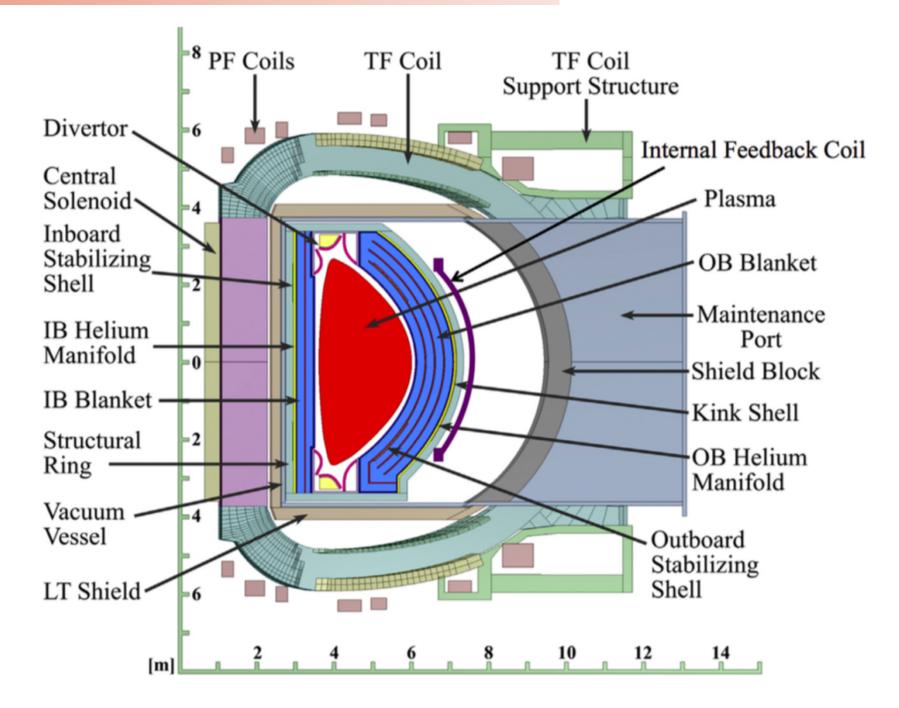
Workshop on Applied Nuclear Data Activities, GWU, Jan 22-24, 2019

We Hope to Build and Operate a Fusion Nuclear Science Facility by ~ 2040 - 2050

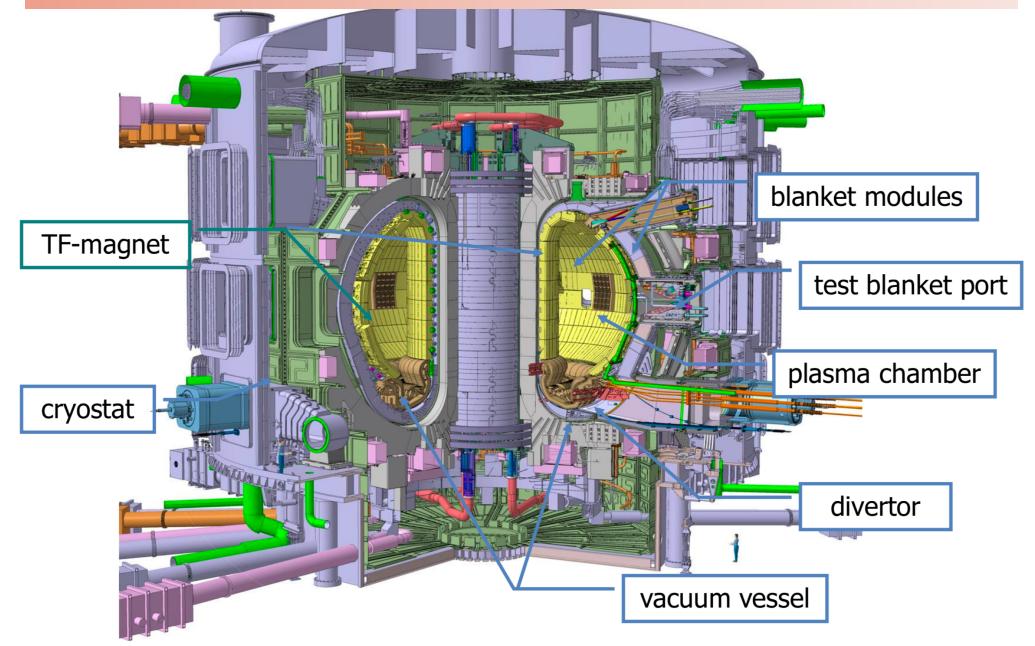
We have begun to explore what this "first" fusion nuclear facility will do in its program and what R&D is required before to prepare for this facility

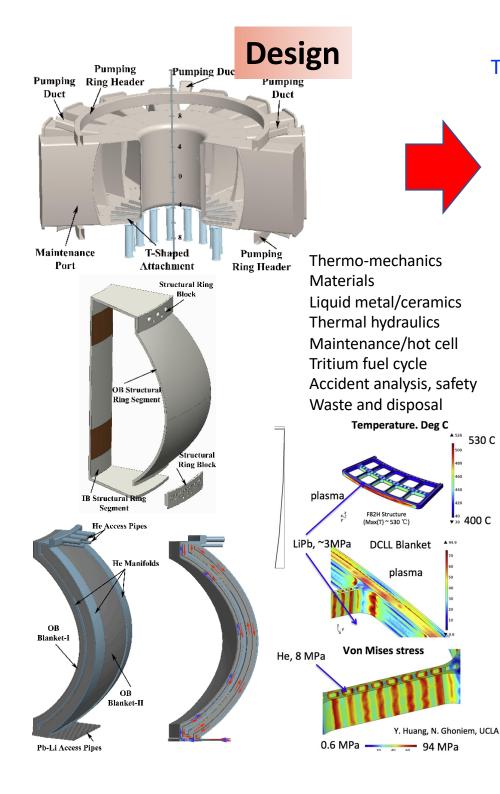

Fusion devices are generally toroidal in shape, like a donut

A high temperature plasma composed of deuterium and tritium is used to generate fusion power via $D + T \rightarrow He_4$ (3.5 MeV) + n (14 MeV)

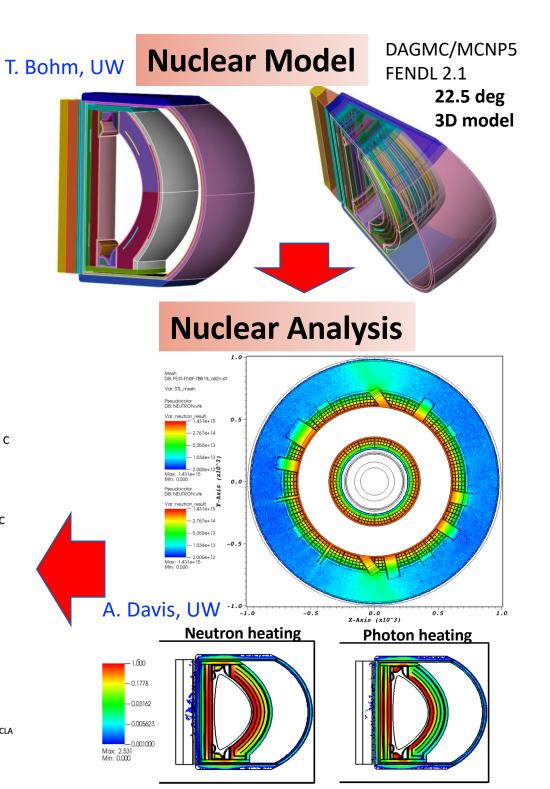

The plasma (neutron source) is surrounded by structures that provide various functions:

- Breed tritium fuel
- Absorb neutron heating
- Shield sensitive components from the neutrons
- Inject power into the plasma for heating and fuel for nuclear reactions
- Sustain the vacuum conditions required for plasma
- Create the strong magnetic fields required to confine the plasma
- Provide diagnostics for plasma and fusion core
- Control of plasma behavior


Tokamak



Fusion Nuclear Science Facility


ITER (International Tokamak Experimental Reactor)

530 C

* 39 400 C

What we want to know, and why

Nuclear Heating

Tritium Breeding Ratio

Material damage, displacements per atom (dpa)

He and H production

Transmutations production

Photon fluxes

Shutdown dose

Decay Heat

Waste management

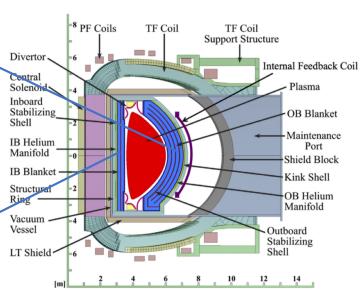
Designing numerous components in the fusion core and beyond

Wide range of different materials in affected nuclear zone

Strong variations in n-flux and n-energy spectrum through thick components, and close and far components from the neutron source

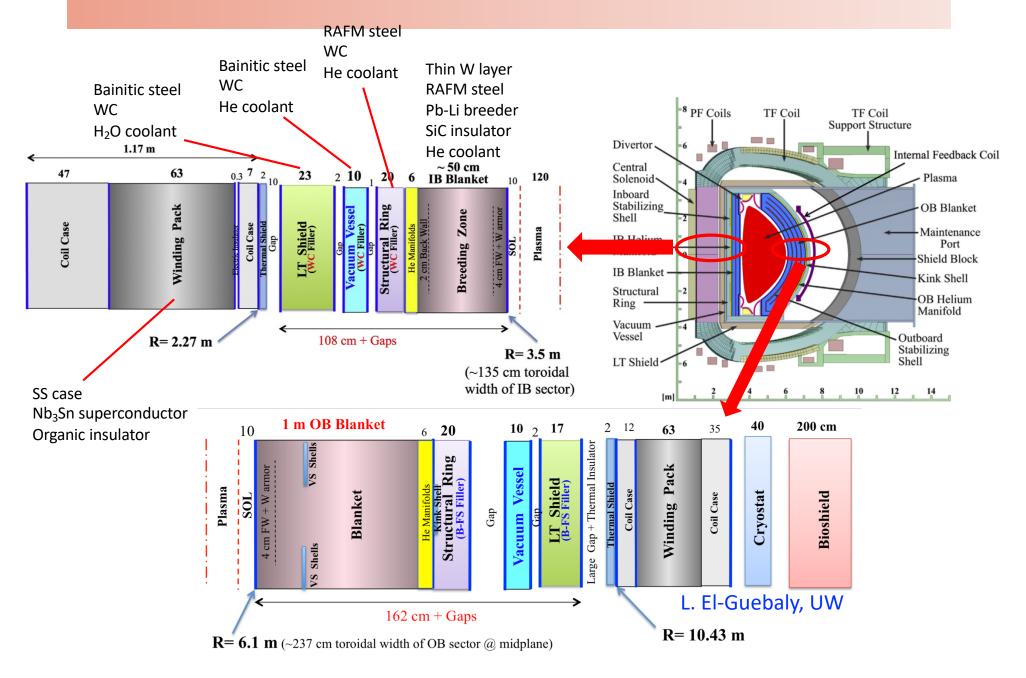
Optimize the materials for their environment (ϕ t, dpa, He, H), long lives and functionality

Accident scenarios, targeting passive safety


Waste reduction, targeting shallow land burial for all waste

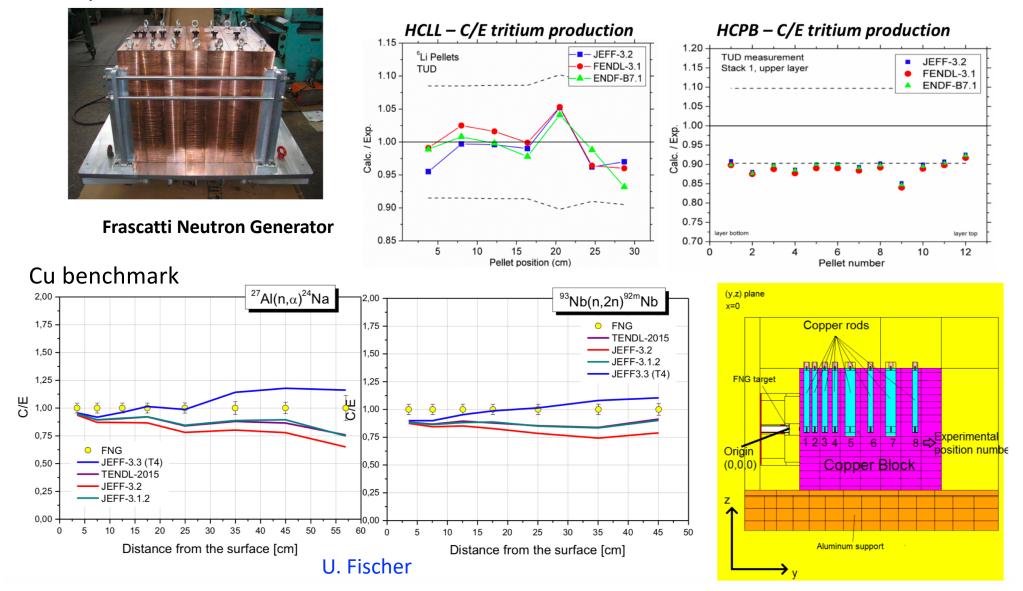
Radiation Damage in the FNSF

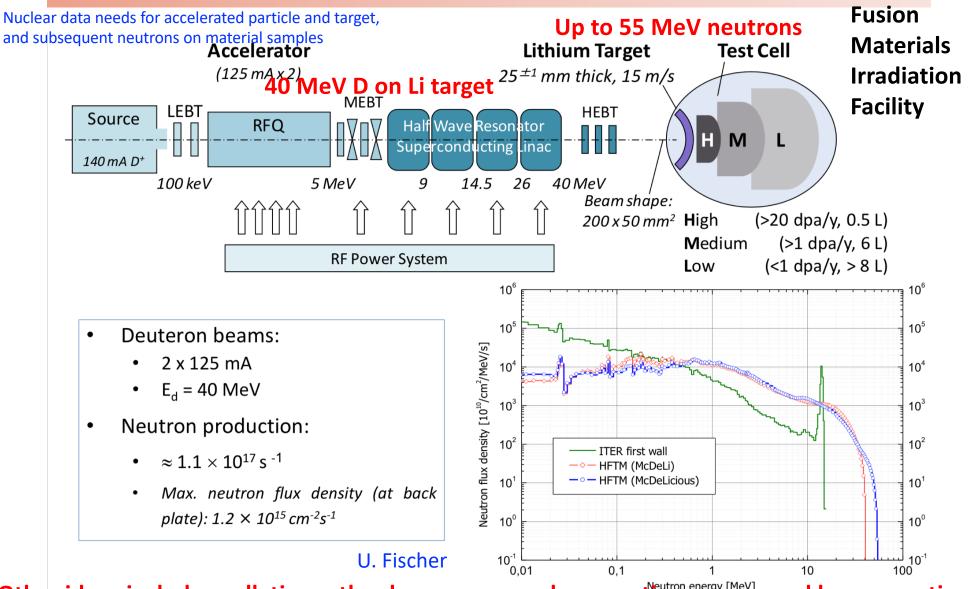
Computations with 3D MCNP (DAGMC) on CAD geometry


	Dpa/FPY	appm He/FPY	appm H/FPY
OB, first wall	15.30	154.6	692.0
OB, shield	0.120	0.010	0.050
OB, vacuum vessel	0.010	0.003	0.003
OB, LT shield	0.008	3e-4	1.2e-3
IB, first wall	13.70	137.3	613.5
IB, shield	2.600	1.700	7.900
IB, vacuum vessel	0.150	0.310	0.250
IB, LT shield	0.024	0.013	0.067

A. Davis, UW, FED2018

Dpa = displacements per atom appm = atomic part per million FPY = full power year


What is in the radial build of the FNSF?


Integral experiments are essential for checking the quality of nuclear data

"point neutron source"

These activities are primarily done by EU

Fusion Requires a Fusion Prototypic Neutron Source to Explore Materials Behavior Before Moving to a Fusion Nuclear Facility IFMIF (Int'I

Other ideas include spallation, other low energy nuclear reactions, e-y-n, and beam reactions

Design of Fusion Nuclear facilities requires intensive nuclear analysis to optimize performance

Materials "damage" is one of several nuclear responses that seriously impact fusion nuclear systems, overall it determines when a material has reached its end of life

The fusion environment is complicated with varying materials, neutron fluxes, n- energy spectra, AND operating temperatures, operating stresses, corrosion, and their gradients

Gas production (transmutation, He and H) is a major contributor to material degradation

Displacement damage cross-section is based on NRT formulation, more accurate approaches may exist (NEA/NSC/DOC(2015)9, <u>www.oecd-nea.org</u>), but displacement damage is found to be similar to fission

Fusion will require a **Fusion Prototypic Neutron Source (FPNS)** (important nuclear data needs) to establish individual material behavior (coupons) in a neutron environment, in order to qualify materials for use in a FNSF.....

but the complex in-service environment of the FNSF is expected to provide new material behaviors, providing another necessary step in material qualification requiring detailed nuclear simulations and accurate nuclear data

Phase	1	2	3	4	5	6	7	
	He/H	DD	DT	DT	DT	DT	DT	PP
years	1-2	2-3	2.75	4.5	5.0	6.5	6.5	40 FPY
Nw ^{peak} ,			1.75	1.75	1.75	1.75	1.75	2.25
MW/m ²								
Plasma on-		15-50	15	25	35	35	35	85
time, %/year								
			55 d	91 d	128 d	128 d	128 d	310 d
Plasma duty			33	67	91	95	95	100%
cycle, %			33	07	91	95	95	10070
(pulse/dwell)			(1d/2d)	(2d/1d)	(5d/.5d)	(10d/.5d)	(10d/.5d)	
Peak dpa			7.2	19.7	30.6	39.8	39.8/79.6	150-200
Peak dpa Peak He,			7.2 73	19.7 200	30.6 310	39.8 403	39.8/79.6 403/806	150-200
Peak He, appm			73	200	310	403	403/806	150-200
Peak He, appm Peak H,								150-200
Peak He, appm			73	200	310	403	403/806	150-200
Peak He, appm Peak H, appm	< 550	< 550	73 325	200 894	310 1388	403 1806	403/806 1806/3612	
Peak He, appm Peak H,	< 550	< 550	73	200	310	403	403/806	150-200 650/500
Peak He, appm Peak H, appm Max/min	< 550	< 550	73 325	200 894	310 1388	403 1806	403/806 1806/3612	
Peak He, appm Peak H, appm Max/min blanket	< 550	< 550	73 325	200 894	310 1388	403 1806	403/806 1806/3612	
Peak He, appm Peak H, appm Max/min blanket structure op	< 550	< 550	73 325	200 894	310 1388	403 1806 650/500	403/806 1806/3612 650/500	
Peak He, appm Peak H, appm Max/min blanket structure op temp, °C	RAFM	RAFM	73 325 550/400 RAFM	200 894 550/400 RAFM	310 1388 600/450 RAFM-	403 1806 650/500 RAFM-	403/806 1806/3612 650/500 RAFM-	
Peak He, appm Peak H, appm Max/min blanket structure op temp, °C			73 325 550/400	200 894 550/400	310 1388 600/450	403 1806 650/500	403/806 1806/3612 650/500	

25.3 years DT, 7.8 years neutrons, 650 plasma pulses