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• TerraPower was started by Bill Gates, Nathan Myhrvold, others after 
invention session in 2006. Privately funded.

• Goal: investigate advanced fission reactors for world-scale energy 
production

• Key requirements included high fuel utilization, low barriers to 
exportation, enhanced safety, and improved cost

• Traveling Wave Reactor was chosen
• “Breed-and-burn” concept enables fast reactor without reprocessing

• Has been discussed in literature since at least 1958

Background

• Formed JV with CNNC in China, but now that’s 
on hold

• Molten Chloride Fast Reactor efforts started in 
2012, now significant US-based effort

• Several other reactor concepts under 
investigation
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We built a reactor modeling system called the Advanced Reactor 
Modeling Interface (ARMI)

Modeling Software Environment
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• Useful for UQ and design intuition

• Method:
• Flux and adjoint computed in 3D on triangles by DIF3D

• Production/destruction matrix derivatives are taken on the 
hexagon level

• Verified results against numerical experiments with perturbed XS 
libraries

• Responses so far: keff , reactivity coefficients, CR worth

We built a sensitivity coefficient module
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• We built a UQ module based on 
OECD/NEA SG33 benchmark
• Read/writes sensitivity data in SG33 format

• Reads/writes covariance matrix in SG33 format 
(COMMARA2)

• Benchmarked basic calc’s against SG33

• We wanted to spin our own 
multigroup covariance matrix 
because:
• Wanted latest data (ENDF/B-VII.1)

• The PFNS (MF5/MT18) of 235U should be 
considered in the startup core of a TWR, 
which uses enriched uranium

• Fission products build up substantially in 
TWRs and might contribute to uncertainty

• Zirconium covariance should be considered 
due to U-Zr metallic fuel

Uncertainty Quantification Module
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Partial COMMARA 2.0 cov. matrix
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Getting UQ Data from ENDF/B-VII.1
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ENDF/B-VII.1 NJOY2016

MF31

MF33

MF35

UQUtils

CovarianceMatrix

Fission Product 
Model

Sensitivity 
Coefficient 

Module

Uncertainties

Reactor model

UQUtils

All these operations are automated in ARMI
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Lumped Fission Product Uncertainty
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• LFPs build up in TWRs, so we must consider their 
uncertainty

• Used bilinearity property to derive expression for the 
covariance between LFP reactions 1 and 2. 
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TWR-P BOL keff Results
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235U standard deviations in ENDF/B-VII.1
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Standard deviations of 235U in ENDF/VII.1 

Talon, P., Young, P. “Quantification of Uncertainties for Evaluated 
Neutron-Induced Reactions on Actinides in the Fast Energy Range,” 
Nuclear Data Sheets, 112, 12, 3054-3074 (2011). 
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Note that sensitivity shape is easy and instructive to interpret. 

• If more fissions were occurring at 10 keV and then spectral hardening 
occurred, CTC would decrease (negative S)

• Capture reactions go in the opposite direction

TWR-P BOL CTC Results
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Integral Parameter Nominal BOL Nominal EOL
Uncertainty 

BOL

Uncertainty 

EOL
kef f 0.997488 0.997980 2.24E-02 1.59E-02

Coolant temperature coefficient (₵/K) 3.62E-03 4.90E-02 4.99E-03 5.64E-03

Doppler coefficient (₵/K) -8.27E-02 -9.43E-02 4.77E-03 4.82E-03

Void worth ($) 2.42E-01 3.33E+00 3.55E-01 3.82E-01

Control Rod worth ($) -1.02E+00 -1.45E+00 2.99E-02 3.78E-02

TWR-P Uncertainty Results
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Integral Parameter TWR-P BOL TWR-P EOL

kef f  2.25E-02 1.59E-02

Coolant temperature coefficient 1.38E+00* 1.15E-01

Doppler coefficient 5.77E-02 5.11E-02

Void worth 1.47E+00 1.15E-01

Control Rod worth 2.92E-02 2.61E-02

Relative uncertainties due to nuclear data in key TWR-P integral parameters

Nominal values of key TWR-P integral parameters with uncertainties due to nuclear data 

* Note high relative uncertainty due to very small absolute
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TWR-C Equilibrium keff Results
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TWR-C Equilibrium CTC Results 
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TWR-C Equilibrium Doppler Results
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Integral Parameter TWR-C Equilibrium Relative Uncertainty 

keff 1770 pcm

Coolant temperature coefficient (CTC) 5.20E-02

Doppler coefficient 6.28E-02

Void worth 4.93E-02

Control rod worth 3.43E-02

TWR-C Equilibrium Results
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Started using sensitivity coefficient module for MCFR
design
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The assessment of how similar the MCFR Test Reactor is 
to the MCFR Prototype Reactor guides Test Reactor 
design choices
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MCFR ENDF/B-VII.1 results
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~2000 pcm without considering Chlorines
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Since then
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Key nuclides/reaction uncertainties:

• 235U capture dominance likely resolved  with Jandel results

• 238U inelastic scatter

• 23Na scattering cross sections (both elastic and inelastic) contribute 
significantly to void worth, Doppler, and CTC uncertainties. 

• 235U PFNS (χ) and 56Fe elastic scatter

• Still unclear: Effects of Chlorine-35 and 37.

For Pu-fueled systems, the priority list is very similar, but 239Pu χ
replaces 235U in the list. 

Conclusions

19



Copyright© 2019 TerraPower, LLC. All Rights Reserved.  

Near-term

• Redo with ENDF/B-VIII.0 library for MC**2-3, or alternative lattice 
code
• Need to identify issue with extraction of MF33

• Communicate updated results to experimenters and evaluators

• Continue Representativity studies as market shifts

Longer-term

• Perform data assimilation to reduce uncertainties

Next Steps and Needs
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