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Cross-cutting

need:

Cross sections for unstable nuclei

Formidable challenge:
nuclear reaction data for

unstable isotopes
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' FRIB, DOE’s flagship

.......

__________

Facility for Rare Isotope
Beams is being constructed
to study unstable nuclei and
their reactions.
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Understanding nuclear reaction
networks involving RadChem tracers
is critical to interpret past test results

and predict performance.

Nuclear astrophysics:

Nuclear energy:

Cross sections are needed
to simulate nuclear energy
generation and waste.

of the heavy elements
requires knowledge of
neutron capture cross
sections
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Addressing current reaction data needs requires theory & experiment




Capability: Determining challenging cross sections
indirectly with surrogate reaction experiments and theory

Surrogate reactions method:
* Replace n + unstable target by a
light-ion “surrogate” reaction on a

stable target.
 Measure the decay of the compound

(CN) nucleus.

Neutron capture Surrogate reaction
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Capability: Determining challenging cross sections
indirectly with surrogate reaction experiments and theory

Surrogate reactions method:
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Capability: Determining challenging cross sections
indirectly with surrogate reaction experiments and theory

Surrogate reactions method:
* Replace n + unstable target by a
light-ion “surrogate” reaction on a

stable target.

 Measure the decay of the compound

(CN) nucleus.

» Use theory to derive constraints on

the decay of the CN and calculate

the desired cross section.

Surrogate
reaction
data

Neutron capture Surrogate reaction
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1) Description of CN formation in
surrogate reaction

2) Bayesian parameter
determination for decay model

Reaction theory is key to determining reliable cross sections




Demonstrating the surrogate method for neutron capture

Escher et al. PHYSICAL REVIEW LETTERS 121, 052501 (2018)
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Demonstrating the surrogate method for neutron capture

Escher et al. PHYSICAL REVIEW LETTERS 121, 052501 (2018)
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New developments in reaction theory enabled successful determination
of neutron capture cross sections




Applying the surrogate method in inverse-
kinematics experiments
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We are building on our developments to determine cross sections from
inverse-kinematics experiments with radioactive beams




How we accomplish the extraction of cross sections
from surrogate reaction data

Surrogate data @) Cross sections
from —— CNXS =—p (n,y) for g.s. & isomers,
Transfer reactions L: Code System Isomer production
Transfer N CN
Reaction I Properties
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Decay Model Reaction
&
ﬁ Nuclear . .

~

Structure Model % 7~ %
. Bayesian Fit
The (p,d) transfer reaction: CN Decay: Final cross section:
« Structure: Deep holes —  Level densities & y strength » Optical model
Dispersive optical model parameters from Bayesian fits

* Best-fit Bayesian
» Reaction: 2-step reactions * Method does not use D, or <I', > parameters w/uncertainties



Developing theory to address further cross section needs

Cross sections
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Developing theory to address further cross section needs

Surrogate data

Transfer reactions &
Inelastic scattering

Cross sections

from
=

Code System (,7), (o), ..

(n,2n), (n,n’), (N,a), ...

CNXS L (o), (ur)s ..

Reactions with isomers

Future Theory Developments

The 88Y(n,2n) reaction from inelastic scattering
Experiment populates compound nucleus in
energy range E., = 0 — 30 MeV
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Surrogate reaction | | Inelastic scattering as surrogate

el | = Need: Integrated structure and inelastic
89y* scattering description
o @

89y Reactions on deformed nuclei
stable — Need: Extended reaction formalism and

structure description

Utilizing other experimental observables
= Need: updated CN decay model coupled to
Bayesian parameter determination

For ®Y(n.2n) 89Y is the only stable Y isotope | | Need: Full assessment of uncertainties.

With additional theory developments, we can generalize the surrogate
approach into a powerful method for a wide range of reactions




How does this capability fit into the larger context?

Data pipeline:

Capability enables the production of
’ important cross section data:

Modeling » Treat cross section + uncertainty

and like a new data set;
Analysis or

I * Integrate cross section calculation
Simulation
Codes

(via Bayesian method) directly into

_ evaluation process. -
Evaluation

Processing

FRIB, DOE'’s flagship

. Facility for Rare Isotope Beams is
being constructed to study unstable
nuclei and their reactions.

Radioactive beam facilities:

Capability enables indirect
measurements for radioactive
isotopes currently not accessible

Number of protons

Number of neutrons

New capability to fill critical gaps in reaction data and
exploit opportunities for ‘data harvesting’ at FRIB
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Summary

Obtaining reliable data for nuclear reactions on unstable isotopes remains an
extremely important task and a formidable challenge. Cross sections for neutron-
induced reactions are particularly elusive as both projectile and target in the reaction
are unstable.

We have developed a solution for this problem: The surrogate reaction method
uses an alternative, light-ion reaction to create the intermediate (compound) nucleus
of interest and measures its subsequent decay. This data provides constraints for the
models describing the decay of the compound nucleus, which dominate the
uncertainties of the cross section calculations.

Key to a successful determination of the desired reaction cross section is a
proper theoretical description of the surrogate reaction mechanisms.

We have demonstrated the approach for (p,d) and (d,p) transfer reactions in the Y-
Zr-Mo region and determined cross sections for both known (benchmark) and
unknown neutron capture reactions.

The method makes no use of auxiliary constraining quantities, such as neutron
resonance data, or average radiative widths, which are not available for short-lived
isotopes; thus is can be applied to isotopes away from stability using inverse-
kinematics experiments.

The method can be used to determine cross sections of other reactions of interest,
provided the commensurate theory is developed. Uncertainty quantification is
integrated into the approach via Bayesian methods.

The approach developed represents a new capability for filling critical gaps in
reaction data and exploiting opportunities for ‘data harvesting’ at FRIB.
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(n,f) cross sections from surrogate measurements

v Complement and extend indirect and direct measurements
v' Typically agree within 10-15% with benchmarks
v" Make use of approximation schemes

Kessedjian ef al. (CENBG), PLB 692 (2010) 297
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What is a surrogate reaction?

sur-ro-gate

'soragaet, sare gat/
noun
a substitute

surrogate reaction

a nuclear reaction that is used in place of a more
experimentally challenging (“desired”) reaction in order to
indirectly infer properties of the desired reaction



We measure deuterons and gamma-rays in coincidence
from the surrogate reaction

From P(p,dy) (E) — N(p,dv)(E)

experiment eyN(p,d)(E)
Problem: 87Y(n,y) Solution: Constrain
calculations are highly calculation with
uncertain surrogate data
Neutron capture Surrogate reaction From To be
) ® theory determined
n d D 1
| 88 | I
87y % Y I AlSurrogate experinfnt gives I
89
unstable . stage P(p,dY) (E)= ZJ,ﬂ: F(p,d)CN(E,J,n)'GCNy(E,J,TC) \
n
e %Y 87Y(n,y) cross section:
O,y = ZJ,n Gn+targetC|\l (E,J,m)- GCNy(Ey'J,TE)
The new cross Well modelled
section we from nuclear
want theory

We use theory to extract the desired cross section



Surrogate experiment

Ndy(E) <:| Number of particle-gamma coincidences
&N g4 (E) <:| Number of particle singles

Si =140, 1000, 1000 pm
AE E1 E2 detectors

Y-ray

m Faraday
Cup

&

Ty =

28.5 MeV
protons

Y-ray

Particle: energy, timing, angle and dE-E allows particle ID

Gamma-rays: energy, timing and angle

J.E. Escher, J.T. Burke, et al,” EPJ
Web of Conf. 146, 12014 (2017)
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