Motivation: Toward new energy dependent FPY data to support fission theory and evaluation

Goal: Predicting independent and cumulative FPYs data simultaneously and consistently in the energy-dependent manner
Motivation: Toward new energy dependent FPY data to support fission theory and evaluation

- Peculiar energy dependency
 - There is a positive slope of the 147Nd FPY from 0.5 to \sim4.0 MeV:
 \[
 \frac{\Delta Y(^{147}\text{Nd})}{\Delta E_n} = (5.8 \pm 1.5)\%/\text{MeV}
 \]
 - At higher energies the FPY for 147Nd turns over and decreases

FPY = (Gamma_count) / Fission_count) * (m_{\text{thin}} / m_{\text{thick}}) * C_i

Building the Fastest Sample-Irradiated Transfer System in the Entire NNSA Complex

RApid Belt-driven Irradiated Target Transfer System

Features

- Fully automated operation
- Fully synchronized with the DAQ system and beam time structure
- User defined cycles \((t_{\text{irr}}, t_{\text{dec}}, t_{\text{mes}}) \) can be repeated many times
- List-mode digital DAQ based on digital electronics

Initially supported by NA-113

- Transfer time = 400ms/1m or 1s/10m
- Highly reproducible irradiation and counting positions (+/- 40 \(\mu \)m)
- Properly oriented target with respect to the irradiation beam and \(\gamma \)-ray detectors
- Soft acceleration and deacceleration
- Sample weight is not a speed limitation

December 15, 2018
Building the Fastest Sample-Irradiated Transfer System in the Entire NNSA Complex

RApid
Belt-driven
Irradiated
Target
Transfer
System

R A B I T T S

Features

- Fully automated operation
- Fully synchronized with the DAQ system and beam time structure
- User defined cycles (t_{irr}, t_{dec}, t_{mes}) can be repeated many times
- List-mode digital DAQ based on digital electronics

Initially supported by NA-113

- Transfer time = 400ms/1m or 1s/10m
- Highly reproducible irradiation and counting positions ($\pm 40 \mu m$)
- Properly oriented target with respect to the irradiation beam and γ-ray detectors
- Soft acceleration and deacceleration
- Sample weight is not a speed limitation
Cycle information:

- $T_{\text{tot}} = 3969$ s
- $T = 81$
- $t_{d1} = 40$ s
- $t_i = 40$ s
- $t_{d2} = 40$ s

$E_p = 3.6$ MeV
$E_n = 2$ MeV

$E_{\gamma} = 279.0$ keV
$T_{1/2} \text{ (Meas)} = 7.75 \pm 0.09$ s
$T_{1/2} \text{ (NNDS)} = 7.73 \pm 0.06$ s

$E_n = 2.0$ MeV
$\sigma(n,n')_{\text{meas}} = 507 \pm 32$ mb
$\sigma(n,n')_{\text{NNDC}} = 510 \pm 42$ mb

$^{197}\text{Au}(n,n')^{197m}\text{Au}$
Short-Lived Fission Product Yields (min – hours)

- Three irradiations on ^{235}U, ^{238}U, and ^{239}Pu at 14.8 MeV
 - $t_{\text{irr}} = 1\ h$
 - $t_{\text{tra}} \sim 4\ minutes$ using the JACK-RABITT System
 - $t_{\text{mea}} = \text{continuous one week of counting}$
- FPY data for more than 45 fission products with half-life of few minutes to a few days
- Time Dependent FPY information to the FIER* code

* E. Matthews et al. FIER code. NIMA A 891 (2018) 111–117
Very Short-Lived Fission Product Yields (~1s)

- Three irradiations on ^{235}U, ^{238}U, and ^{239}Pu at 2.0 MeV
 - $t_{\text{irradiation}} = 1$ s
 - $t_{\text{transition}} \sim 0.5$ s using the RABITT System
 - $t_{\text{measurement}} = 1$ s, 5 s and 10s
 - T_{tot} continuous of 4 h
- FPY data for with half-live of 1 second to a few minutes
- Time Dependent FPY information

Cycle information:

- $T_{\text{tot}} = 4$ h
- $T = 3$ s
- $t_{d1} = 1$ s
- $t_{i} = 1$ s
- $t_{d2} = 1$ s
- $t_{m} = 1$ s

✅ Successful commissioning of the RABITT system
✅ The very short-lived FPY data is in our reach
Impact of the New Fission Product Yield Data

- Reactor neutrino study
- Nuclear astrophysics and cosmochemistry
- Nuclear Forensics
- Radio-isotope production for medical applications

New FPY data base

Basic Physics

Application
Acknowledgements

LLNL

J. BECKER
R. HENDERSON
N. SCHUNCK
J. SILANO
M. STOYER
A. TONCHEV
R. VOGT

LANL

T. BREDEWEG
M. CHADWICK
M. GOODEN
M. FOWLER
T. KAWANO
D. VIEIRA
J. WILHEMY

LBNL

L. BERNSTEIN
E. MATTHEWS

TUNL

S. FINCH (PD)
B. FALLIN (GS)
F. KRISHI (PD)
C. HOWELL
W. TORNOW

Strong Partnerships with the TUNL/LBNL Stockpile Stewardship Academic Alliance Group