X-energy: Nuclear Data Needs for HTGR Systems Eben Mulder

SVP, CNO

Workshop for Applied Nuclear Data Activities (WANDA)

Jan 23–24, 2019

10

© 2019 X Energy, LLC, all rights reserved

Nuclear Energy. Reimagined.

Pebble Bed High Temperature Reactor

Plant features / attributes include:

- Using proven UCO TRISO Fuel in graphite pebbles
- Passive safety features Cannot melt-down
- Operated without needed water source
- Load-following to 100% 40% power within 12 minutes (5% per minute)
- Online fueling; resilient on-site fuel storage
- Requires less time to construct (2.5 4 years)
- Road transportable for diverse geographic areas

UCO TRISO Particle Pebble Fuel Elements

Design Safety Basis

0

Reactor Integrated Design Process

Neutronics Codes

- Mulit-scale, multi-physics design analyses to date have been performed using legacy pebble bed design codes – VSOP (Steady state), TOTMOS (Reactivity Control and Shutdown Systems) and MGT (Transient)
- These codes have a longstanding pedigree and have been used to design 3 operating reactors (AVR, THTR and HTR-10) as well as the HTR-PM that is nearing construction completion

Source Term Calculation

Tool Review (1997)	Source Term Path	Element / Isotope	Form / State	Mechanism	Physical Phenomena	Methods / Software Codes
	Releases from TRISO fuel particles	Iodine Silver Strontium Cesium 	Gaseous FPs Metallic FPs	 Release from TRISO particles into matrix graphite Activation of impurities 	Temperature, irradiation time, fast fluence, burnup, particle defects, contamination	VSOP MGT SCALE, PARCS, OREGIN FLOWNEX XS-Term STAR-CCM+
	Releases from fuel elements (pebbles)	lodine, Silver Strontium Cesium Graphite dust	Gaseous FPs Metallic FPs Dust Particles	- Diffusion from pebble into the helium stream - Activation of impurities	Temperature, irradiation time, fast fluence, burnup, contamination	VSOP, MGT SCALE, PARCS, OREGIN FLOWNEX XS-Term STAR-CCM+
	Releases from Pressure boundary	lodine, Silver Strontium, Cesium Graphite dust Metallic dust	Gaseous FPs Metallic FPs Dust Particles	 Leakage from HPB into building and structures Activation of impurities 	Instrumentation line failure, small & large pipe breaks, plate-out, liftoff	ORIGEN XS-Term
	Releases from building	lodine, Silver Strontium, Cesium Graphite dust Metallic dust	Gaseous FPs Metallic FPs Dust Particles	- Transport throughout building to the environment	Plate-out, liftoff	XS-Term MELCOR
	Max dose at site boundary	lodine, Silver Strontium, Cesium Graphite dust Metallic dust	Gaseous FPs Metallic FPs Dust Particles	- Atmospheric dispersion - Ingestion	Postulates	XS-Term STAR-CCM+ ?

DOE Codes

Summary

- Core design work i.e. coupled neutronics and thermofluidic calculations at X-energy is performed deterministically by means of Diffusion and Transport methodologies, as well stochastically by high fidelity codes, such as MCNP, coupled to ORIGEN and other codes
- Spectrum calculations for the diffusion codes are based on the GAM-I and the THERMOS codes respectively, needing fast, epithermal and thermal data libraries
- These respective nuclear libraries are extracted from basic nuclear data sets
- The GAM-I library presented in 68 energy groups ranges from 10MeV to 0.414eV. In its current form, it contains 181 isotopes
- The THERMOS library presented in 30 energy groups, ranges between 0 to 2.05eV
- The absorber elements are similar to those in the GAM-library
- The scattering nuclide kernels are prepared in accordance with to the particular application for different scattering laws at the associated temperatures. The basic thermal source library is given in 96 energy groups in the group structure of the THERMALIZATION spectrum code (a precursor of GATHER)
- Condensing of the THERMALIZATION library to a THERMOS library is based on a specific thermal neutron energy spectrum being adequate for the reactor and fuel elements under consideration. An auxiliary allows to modify the THERMALIZATION library
- Of particular note it is mentioned that several scattering matrices are presented of the same nuclide, such as graphite, oxygen, hydrogen, beryllium, etc. for different temperatures
- Neutron streaming behavior is considered statistically by means of a variety of corrections (eg. Lieberoth and Stojadinović, adapted Behrens, etc.)

Nuclear energy. Reimagined.

X Energy, LLC 801 Thompson Ave, Suite 200 Rockville, MD 20852

www.x-energy.com

@xenergynuclear

