A 4π array for the inelastic scattering study

Workshop for applied nuclear data activities

January 24, 2019

Lawrence Livermore National Laboratory

Ching-Yen Wu

LLNL-PRES-766456

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Neutron inelastic scattering on actinides

Proposed approach

- Highly segmented $4\pi \gamma$ -ray calorimeter with capability of neutron detection
- − Dual Mode scintillator: $TI_2^6LiYCI_6$ (≥ 95% ⁶Li, 75.8% ³⁵Cl, ρ = 4.5 g/cm²)
 - γ-ray energy resolution better than 4% and the efficiency better than Nal
 - Neutron energy resolution better than 10% and the efficiency > 80% for thermal neutrons
- Closed pack structure possible because both γ and neutron energies are measured directly

Existing 4π γ-ray arrays

- DANCE at LANL
 - Excellent γ-ray calorimeter with low sensitivity to neutrons
 - A total of 162 BaF₂ crystals with four different shapes, a regular hexagon (12), three irregular pentagons (60 + 60 + 30)
 - Efficiency ~ 84 88% and peak-to-total ~ 55% remain nearly constant for the γ energy between 150 keV and 10 MeV
- Gammapshere
 - A highly segmented γ array of high energy resolution
 - A total of 122 locations with four different shapes, a regular pentagon (12), three irregular hexagons (60 + 30 + 20)

Characterization of TLYC scintillator and initial exploration of 4π array

Current status and future plan

- A 1" x 1" crystal was ordered in FY19 for measuring
 - γ response with standard γ calibration sources
 - Timing, γ -neutron separation, pulse shape ... with a ²⁵²Cf fission PPAC in LLNL
 - Simulations on the γ response using GEANT4 and the neutron response by MCNP
 - Optimization achieved by comparing to measurements
- A shaped crystal of 3" x 3" will be ordered in FY20
 - Neutron response using a monoenergetic neutron source at Ohio University
- Simulations on a 4π array
 - Total efficiency and the peak-to-total ratio for γ as a function of energy
 - Total efficiency and the multiple scattering for neutron as a function of energy
- A new design of fission PPAC to minimize the complicated background originated from various foils and improve the separation between fission and α

