A 4π array for the inelastic scattering study

Workshop for applied nuclear data activities

January 24, 2019

Ching-Yen Wu
Neutron inelastic scattering on actinides

- **Proposed approach**
 - Highly segmented 4π γ-ray calorimeter with capability of neutron detection
 - Dual Mode scintillator: $\text{Tl}_2^6\text{LiYCl}_6$ (≥ 95% ^6Li, 75.8% ^{35}Cl, $\rho = 4.5 \text{ g/cm}^2$)
 - γ-ray energy resolution better than 4% and the efficiency better than NaI
 - Neutron energy resolution better than 10% and the efficiency > 80% for thermal neutrons
 - Closed pack structure possible because both γ and neutron energies are measured directly

- **Existing 4π γ-ray arrays**
 - DANCE at LANL
 - Excellent γ-ray calorimeter with low sensitivity to neutrons
 - A total of 162 BaF$_2$ crystals with four different shapes, a regular hexagon (12), three irregular pentagons (60 + 60 + 30)
 - Efficiency ~ 84 – 88% and peak-to-total ~ 55% remain nearly constant for the γ energy between 150 keV and 10 MeV
 - Gammapshere
 - A highly segmented γ array of high energy resolution
 - A total of 122 locations with four different shapes, a regular pentagon (12), three irregular hexagons (60 + 30 + 20)
Characterization of TLYC scintillator and initial exploration of 4π array

- **Current status and future plan**
 - A 1” x 1” crystal was ordered in FY19 for measuring
 - γ response with standard γ calibration sources
 - Timing, γ-neutron separation, pulse shape … with a 252Cf fission PPAC in LLNL
 - Simulations on the γ response using GEANT4 and the neutron response by MCNP
 - Optimization achieved by comparing to measurements
 - A shaped crystal of 3” x 3” will be ordered in FY20
 - Neutron response using a monoenergetic neutron source at Ohio University
 - Simulations on a 4π array
 - Total efficiency and the peak-to-total ratio for γ as a function of energy
 - Total efficiency and the multiple scattering for neutron as a function of energy
 - A new design of fission PPAC to minimize the complicated background originated from various foils and improve the separation between fission and α