Covariance availability for neutron reaction data

WANDA, 2019

Ian Thompson

LLNL-PRES-766145

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Desired Covariances

- Covariance matrices should describe
 - the uncertainties at particular energies and angles (diagonals)
 - the correlations between different energies, angles (off-diagonals).
- Should reflect:
 - Uncertainties in experimental measurements
 - Correlations between experiments induced by common calibrations:
 - Target thickness & purity, Beam energy and resolution, Detector calibrations
 - Correlations from ratio measurements etc., in GMA analysis.
 - Correlations between model predictions in different channels:
 - Common roles of level densities, optical potentials, fission barriers, etc.
- Rarely yet included:
 - Correlations from fitting integral experiments e.g. critical assemblies.
 - Induce correlations between fission cross-sections, multiplicities, fission spectra (not always representable in ENDF format)

Covariances in ENDF/B-VIII

- This library has the best covariance set to date.
- But no covariances <u>at all</u> for neutrons on:
 - N14, Fe58, Cu63,65, Zn67,68,
 U237,239,240, Am242. (*)
- No covariances for some channels:
 - Charged-particle production on Al27, Si28, Au197, U235, 238.
 - Au197(n,2n) *
- Some odd covariances:
 - Large: N15
 - Small: Pu240
- No covariances between fission and fission-neutron spectra.

* Early 'Lo-Fi' covariances exist in ENDL library at LLNL R.C. Little, et. al., "Low-fidelity Covariance Project", Nucl. Data Sheets **109**, pp. 2828-2833 (2008)

Filling in the gaps

- Want (at first) without a new full evaluation.
- Construct simple covariances based on
 - 1. Differences between existing evaluation libraries.
 - 2. Comparison of mean values with spreads of experimental data
 - 3. Model-dependence between channels
 - Clone covariance pattern in library for neighbors in this nuclear region.
 - For example, elastic and inelastic are commonly anti-correlated.
- Use low-fidelity ('Lo-Fi') covariances described by Little *et al* (2008):
 - Based on variations of model parameters.
 - Use TENDL parameter sets if no other models available?
 - Still need to be validated against spreads of experimental data
 - Maybe reduce off-diagonal correlations to reflect uncorrelated data spreads.
- Eventually: new evaluations
 - The INDEN group (coordinated by IAEA Vienna) is currently re-evaluating:
 - Light: Be9, N14,15, Na23
 - Others: Fe55,56, Actinides, Pu chains.

