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Fluoride-cooled high-temperature reactors
feature solid fuel and molten salt coolant

m Solid fuel: fuel is In the form of pebbles, plates, or
blocks containing coated-particle fuel (TRISO)
developed for high-temperature gas-cooled
reactors (HTGRs) with failure temperatures >1650°C

m Coolant: high-temperature, low-pressure liquid-salt
coolant (‘Li,BeF,) with freezing point of 460°C and
boiling point >1400°C (transparent)




Data of importance for FHRs

= Thermal scattering data
m Graphite
m Flibe

m Cross sections of '7F, ‘Be, ¢/7Lj
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The major source of uncertainty in flibe
s /Li capture cross section

Reaction Uncertainty, pcm
’Li capture 1,240

235U nu 379

238 capture 214

1PF capture 172
235 capture 157
235 fission 138
12C capture 138
12C elastic 121
Total 1,380




FHRs feature relatively small coolant
density reactivity coefficients

= Coolant density (temperature) reactivity
feedback in FHRs is a fine balance
between flibe absorption and
moderation

m Positive feedback from reduced absorption

= Negative feedback from reduced
moderation (spectrum hardening)

m Coolant tfemperature feedbacks can
only be achieved if flilbe has a significant
contribution to moderation
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Uncertainty in the coolant density feedback is
also dominated by “Li capfure

Reaction Relative uncertainty, %
’Li capture 31.30
F capture 4.33
1PF elastic 2.10

’Li elastic 1.67

’Be capture 0.99




’Be(n,alpha) cross section
determines °Li concentration

m ¢SLi cannot be completely eliminated |
as it produced by (n,alpha) vl 2
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FHR and fluoride molten salt reactors
share similar data needs

Uncertainty from nuclear data for the effective
multiplication factor of the Molten Salt Reactor Experiment

Reaction Uncertainty, pcm
235U nu 373
12C elastic 263
238y capture 257

’Li capture 197
235 capture 171
1F elastic 143

235(J fission 120




Chloride molten salt reactors are impacted by
the large uncertainties in 3>Cl cross sections
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There are large discrepancies between
data libraries for >Cl(n,p) cross section
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The main discrepancies are
INn tThe fast energy range
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ENDF/B-VII.1 includes detailed
resonances between ~0.1
MeV and ~1 MeV

This is more realistic than the
smooth tfrend adopted so far
by other libraries

The cross section in this region
is 2-3 orders of magnitude
smaller when using
ENDF/B-VII.1 vs. ENDF/B-VII.O

In fast systems most neutrons
are in this energy region




The difference between ENDF/B-VII.O
and ENDF/B-VII.1 is 5200 pcm!

Quantity ENDF/B-VII.O ENDF/B-VII.1 Difference

Keo 1.06789 £ 0.00023 1.11989 £ 0.00021 +0.05200

(n,p) effective cross

/ 0.01947 0.01109 -0.0083¢9
section, b

(n, y) effective cross

section, b 0.00245 0.00246 +0.00001




Switching from ENDF/B-VII.O to ENDF/B-VIL1 is 5
equivalent fo increase 3/Cl enrichment to about 50%
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New measurements were made at UC Berkeley
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J. Betchelder et al., Evidence of non-statistical properties in the 33Cl(n,p)3%S cross section



Berkeley

UNIVERSITY OF CALIFORNIA

Impact of nuclear data on the
design of fluoride cooled reactors

Massimiliano Fratoni | University of California, Berkeley

Workshop for Applied Nuclear Data Activities
January 23, 2019




