

Impact of nuclear data on the design of fluoride cooled reactors

Massimiliano Fratoni | University of California, Berkeley

Workshop for Applied Nuclear Data Activities

January 23, 2019

Fluoride-cooled high-temperature reactors feature solid fuel and molten salt coolant

 Solid fuel: fuel is in the form of pebbles, plates, or blocks containing coated-particle fuel (TRISO) developed for high-temperature gas-cooled reactors (HTGRs) with failure temperatures >1650°C

Coolant: high-temperature, low-pressure liquid-salt coolant (⁷Li₂BeF₄) with freezing point of 460°C and boiling point >1400°C (transparent)

Data of importance for FHRs

- Thermal scattering data
 - Graphite
 - Flibe
- Cross sections of ¹⁹F, ⁹Be, ^{6/7}Li

The major source of uncertainty in flibe is ⁷Li capture cross section

Reaction	Uncertainty, pcm	
⁷ Li capture	1,240	
²³⁵ U nu	379	
²³⁸ U capture	214	
¹⁹ F capture	172	
²³⁵ U capture	157	
²³⁵ U fission	138	
¹² C capture	138	
¹² C elastic	121	
Total	1,380	

FHRs feature relatively small coolant density reactivity coefficients

- Coolant density (temperature) reactivity feedback in FHRs is a fine balance between flibe absorption and moderation
 - Positive feedback from reduced absorption
 - Negative feedback from reduced moderation (spectrum hardening)
- Coolant temperature feedbacks can only be achieved if flibe has a significant contribution to moderation

Coolant temperature reactivity feedback (pcm/K) as a function of carbon-to-heavy metal ratio

Uncertainty in the coolant density feedback is also dominated by ⁷Li capture

⁹Be(n,alpha) cross section determines ⁶Li concentration

- ⁶Li cannot be completely eliminated as it produced by (n,alpha) reactions on ⁹Be
- Concentration of ⁶Li reaches an equilibrium that depends on cross sections

$$N_{Li-6} = \frac{\sigma_{Be-9}^{\alpha}}{\sigma_{Li-6}^{abs}} N_{Be-9}$$

 1 ppm of ⁶Li is worth ~175 pcm reactivity

⁹Be(n,alpha) cross section

FHR and fluoride molten salt reactors share similar data needs

Uncertainty from nuclear data for the effective multiplication factor of the Molten Salt Reactor Experiment

Reaction	Uncertainty, pcm		
²³⁵ U nu	373		
¹² C elastic	263		
²³⁸ U capture	257		
⁷ Li capture	197		
²³⁵ U capture	171		
¹⁹ F elastic	143		
²³⁵ U fission	120		

Chloride molten salt reactors are impacted by the large uncertainties in ³⁵Cl cross sections

There are large discrepancies between data libraries for ³⁵Cl(n,p) cross section

The main discrepancies are in the fast energy range

ENDF/B-VII.1 includes detailed resonances between ~0.1 MeV and ~1 MeV

This is more realistic than the smooth trend adopted so far by other libraries

The cross section in this region is 2-3 orders of magnitude smaller when using ENDF/B-VII.1 vs. ENDF/B-VII.0

In fast systems most neutrons are in this energy region

The difference between ENDF/B-VII.0 and ENDF/B-VII.1 is 5200 pcm!

Quantity	ENDF/B-VII.0	ENDF/B-VII.1	Difference
k∞	1.06789 ± 0.00023	1.11989 ± 0.00021	+0.05200
(n,p) effective cross section, b	0.01947	0.01109	-0.00839
(n, γ) effective cross section, b	0.00245	0.00246	+0.00001

Switching from ENDF/B-VII.0 to ENDF/B-VII.1 is equivalent to increase ³⁷Cl enrichment to about 50%

New measurements were made at UC Berkeley

Impact of nuclear data on the design of fluoride cooled reactors

Massimiliano Fratoni | University of California, Berkeley

Workshop for Applied Nuclear Data Activities

January 23, 2019