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Abstract

   Extensions of the standard stopping model (SSM) for ion projectiles interacting with dense targets of timely concern for IDF and WDM are reviewed. They include multiple scattering on partially degenerate electrons, low velocity ion slowing down in demixing H-He mixtures within Jovian planets core or multiionic target such as Kapton.

1. Introduction : SSM  and  its  Extensions

   As well-known [1-4], direct and indirectly driven HIF scenarii are based on rather straightforward albeit robust assumptions concerning the interaction of nonrelativistic ions with the dense material building up the content of pellets currently envisioned for ICF-like compression. Details featuring the content of the corresponding standard stopping model (SSM) are given on Fig. 1. Main assumptions include a nonrelativistic interaction between projectile ion with a mostly classical target electron fluid taken in a Born RPA approximation, altogether with a Gaussian charge distribution of the incoming heavy ion projectile. The experimental vindication of such a formulation is reached through the scaling rule.
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Connecting projectile energy loss E to target lineic density nel (l, slab penetration distance). Most experimental programs dedicated toward this goal display a typical scheme given on Fig. 2.
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Fig.1. Best significant features of the standard stopping model (SSM) pertaining to non relativistic ion projectiles charge distribution and stopping mechanisms.
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Fig. 2. Experimental ion-plasma interaction programs dedicated to SSM vindication 

   The robustness of the SSM-modelling is attested by the vanishing of the ~ Z3 Barkas effect, Z denoting the projectile effective charge, and Bloch corrections pretty similar to their cold gas homologues [5].

   First, complying with the recent advent of pw-laser produced light ion beams, we focus attention on multiple scattering on partially degenerate electrons, with a contribution comparable to the usual ion one. Next, in order to provide numerical support HIF facilities [6], Low Velocity Ion Slowing Down (LVISD) is considered for multi-ionic targets of various purposes. These include also demixing of the strongly coupled 
[image: image4.wmf]mixtures demixing within the core of Jovian planets, as well as Kapton foils.

2. Multiple scattering of slow ions in a Partially Degenerate

    Electron Fluid (PDEF)  (7, 8, 9)

A. Single scattering
Adapting the T = 0 formalism for the ion projectile scattering probability expressed as 
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with a pointlike projectile form factor F(q) = Ze, Z being the ion charge, and using the  splitting d3q= d2q( dq// relative to initial beam we get 
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expressing the probability of ion projectile differential scattering yielding its angular deflections in single scattering events, through inclusion of the target electrons collective screening properties yields
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(4)

where

G(T (q() 
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(5),
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Same caption with enlarged qperp range.

Fig. 3  Probability distribution G(T(q( ) at any temperature T contrasted to its free electron gas (FEG) counterpart (T=0). q( in a0-1 and rs = 1.5.Teta=T/Tf
B- Multiple  Scattering

General


From the density probability function we can access the differential cross-section for ion multiple scattering in a PDEF. At a given transverse momentum transfer (q(, this quantity writes as
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with angular ion deflection ( taken in the small-angle approximation (q( =Mpvp( , with the ion projectile mass Mp. 
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 is featured on Figs. 3.


We then turn to the convolution of the multiple scattering events, as the particle penetrates a distance X within the solid. It is usually represented by the multiple-scattering (MS) function f(,X) which yields the statistical distribution of particles with a total angular deflection . So we can express the electronic multiple-scattering (EMS) function in the form F(,X)d( = f(,X)d(/2π, where f,X) is given in the small-angle approximation by
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The function 0() defined scattering is determined from the previously defined function G(T(q(), for the present case of a PDEF, which takes the form
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(8)
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Fig. 41/2 (in degrees) in terms of T/TF in an electron target with density rs = 1.5 and thickness X = 800 a.u. (0.0424 m). k ( 1.  

with q( qualifying a classical and non-degenerate upper bound. In this connection, it is worthwhile to notice that replacing the given infinite upper limit by the fully degenerate 2qF one, does not change significantly the 0() estimate.


Finally we reach the angular distribution function explained for a given penetration depth X in target.

HWHM angle  1/2


Analysis of the quadrature in the previous reached Eq.8 essentially relies on 1/2, the half-angle at half-maximum, fulfilling f(,X) =f(0,X)/2. The usefulness of this concept is successively highlighted through its T-dependence, X-dependence, vp-dependence as well as ne (or rs)-dependence.


The T-dependence is documented on Fig.4 as a monotoneous decay for a PDEF target  ≥ 1 with ne ( 4.8 x 1023 and a thickness X = 0.0424 m (800 a.u.), while the strongly degenerate regime ( < 1) depicts a nearly horizontal plateau.

3. Low - velocity  ion  slowing  down  in  strongly  asymmetric and     binary  ionic  mixtures

Ion stopping at nonrelativistic energies in dense plasma targets feature a number of very important applications. One of the most significant one concerns heavy ion compression of micronsize pellets containing the deuterium + tritium (DT) thermonuclear fuel [1]. The given heavy ions impact targets at one-third light speed, much above the target electron thermal velocity Vthe. On the other hand, the subsequent alpha particles resulting from the DT fusion in a very dense plasma with electron density ne ~ 1026 e-cm-3 and temperature in the keV range, display a velocity mostly below Vthe. A stopping regime given only a scarce attention, up to now. In the first case (Vp> Vthe) most of the projectile kinetic energy is transferred to target electrons with a typical Bethelike stopping behavior –dE/dx ~ Vp-2 .


In the second situation, projectile ions stopping takes place mostly against target plasma ions  thus featuring
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(9)
for the remaining electron stopping contribution in this low velocity ion slowing down  (LVISD) regime.


Here, we intend to stress quantitatively the remaining LVISD contribution. For this purpose, we consider the target as a binary ionic mixture (BIM) built on ion species (M1, Z1) and (M2, Z2) neutralized by a classical electron fluid viewed in a Fried-Conte dielectric picture [2].


At the qualitative level, we intend to contrast the high Vp slowing down regime, independent of the projectile mass, to the LVISD strongly correlated to (M1/ Z1) and (M2/ Z2).

 Basic  formulation

Within the dielectric framework we consider the electromagnetic response of a target plasma built on electrons and ion species (Zi, Mi). The target ion part is taken here as a weakly coupled binary ionic mixture (BIM), which will prove sufficient in the subsequent considered plasma targets. In such an approach, it appears useful to work with the overall dielectric function


[image: image19.wmf]
(10)

and the usual Fried-Conte dispersion function W(Im≥ 0)
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(11)

and X()=ReW(), Y()=ImW(). Generalizing linearly through expression (10) the standard one-component stopping quadrature [3, 4]
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with Z = Zeff/ND, where Zeff denotes the projectile effective charge at velocity Vp, ND=ne3De in terms of target electron density and corresponding Debye length. In the sequel, Vp will be scaled by 
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, thermal electron velocity with T, thermalized target temperature. In Eq. (12), we pay attention to the selection of maximum cutoff kmax, taking into account quantum effects diffraction (kBT≥1Ry) within a high temperature plasma. So, one explicits [10, 11]
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Where V is now dimensionless on the second line on the right-hand-side. Here =1/137 is the fine structure constant, and c, light velocity. In this regard, it should be noticed that the occurrence of quantum diffraction kmax is restricted to the electron fluid component of the target. The corresponding BIM will always appear as pointlike classical, as long as one restricts to the velocity range Vthi≤Vp≤Vthe. In adapting Eq. (12) to BIM stopping, it proves convenient to introduce the relative ion concentration of species 1, i.e
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(14)

in terms of ion number Ni with i = 1,2, in target plasma, so that BIM densities
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(15)

are straightforwardly expressed in terms of electron density ne.


Then, we can estimate the stopping contributions of every target component : electron (0), ion 1 and ion 2 as follows
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where 
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(16 c)

altogether with
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(17 b)
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(17 c)

Expressions (16a-16c) are in kBT/D, with the Debye screening length D respectively adapted to electron, ion 1 and ion 2. Vp is in Vthe
Proton-
[image: image34.wmf]

A strongly mass asymmetric situation is afforded when fixing same charge on both ions, one thus pushes to an extreme the mass difference, as evidenced on Fig. 5 by the system proton-
[image: image35.wmf].


In this case, one witnesses that for  > 0.1, the lightest stopping ion (proton) overwhelms the LVISD process. 
[image: image36.wmf] only displays a non zero LVISD for 
[image: image37.wmf] ≤ 0.025, fixing its critical velocity. On the other hand,proton critical velocities (according to temperature dependence) range between 0.075 and 0.15. Stopping contribution of the less mobile 
[image: image38.wmf] is essentially concentrated on the 
[image: image39.wmf] < 0.025 range.
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         [image: image44.png]Figs. 5. Proton stoppmg in H*- U238 BIM in terms of V /Vthe

n, = 1023 e-cm™. a denotes proton concentration in BIM.

T(eV) = (emmmmnann ) 500, (= = = = = - ) 1000, and (= — — =) 5000.
Dark gray (red) pertains to e-stopping, light gray (green) to H*-stopping,
and black gray (blue) to stopping U, -stopping.




4-Proton Stopping in polyimide  (Kapton)

  The above formalism may be linearly and straightforwardly extended to more complex and multiionic targets.

   A specific case of genuine interest is the hydrogen-carbon-nitrogen-oxygen combination underlying the structure of polyimide (Kapton) foils, with respective mass proportions, hydrogen, 0.02636, carbon, 0.691133, nitrogen, 0.07327 and oxygen, 0.20923. Again, we expect a significant stopping contribution arising from multicharged target ions. On Figs. 6(a-c), we selected out the occurrence with highest ionization thus featuring 0.1g/cc and 1.000 eV. The  latter got estimated through an isothermal and iso-electronic self-consistent average atom-model mixing. Mixture density is derived from partial volumes additivity. One can thus witness a dramatic increase of ion stopping when the maximum available projectile energy, Ep (MeV), is allowed to decay.
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Fig.6. Proton stopping in Kapton at 0.1 g/cc and 1 keV.
ZH = 0.99992, ZC = 5.9845, ZN = 6.69839 and Z0 = 7.9766

(a) Maximum Ep (MeV) = 0.01, (b) Maximum Ep (MeV) = 0.1, (c) Maximum Ep (Mev) = 1.

5- Low Velocity Ion Slowing Down in a Demixing 

    Binary Ionic Mixture [12]


We now consider ion projectile slowing down at low velocity Vp < Vthe, target thermal electron velocity, in a strongly coupled and demixing H-He ionic mixture. It is investigated in terms of quasi-static and critical charge-charge structure factors. Non-polarizable as well as polarizable partially degenerate electron backgrounds are given attention. The low velocity ion slowing down turns negative in the presence of long wavelength and low frequency hydromodes, signaling a critical demixtion. This process documents an energy transfer from target ion plasma to the incoming ion projectile.


Whitin a dielectric framework for target particles, the nonrelativistic ion stopping thus reads as 
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which can be straightforwardly reexpressed in terms of the ion charge-ion charge structure factor when switching to very low
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with Vthi, thermal velocity and Ci, relative concentration of ion i.
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(19)

with the usual electron (q,) now extended to the ion components building up the BIM, and the charge-charge structure factor

                            
[image: image51.wmf]


where  C1+C2 = 1. Ci refers to concentration of species i within a BIM built on target ion charges Z1 and Z2.


Focussing attention on the slow and long wavelength hydromodes (q(0 monitoring BIM demixing, one can safely restrict Eq. (19) to its static limit (
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Critical Szz (q)


Mean field classical description of BIM demixing could be rather straightforwardly explained with the static charge-charge structure factor 
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where 
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 ∑ denotes a constant normalizing factor accessed through the sum rule 
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where  
[image: image60.wmf]  

z

2

=

1

+

C

1

C

2

(

Z

1

-

Z

2

)

2

/

Z 

2

.



Expression (21) mostly emphasizes long distance hydromodes, of significance at critical demixtion.


Paying a first attention to nonpolarizable BIM with a fixed and rigid electron background, the correlation length reads as
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where DI and DR respectively denote the q ( 0  limit of
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and
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in terms of
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 denotes the partial direct correlation function, viewed in the Ornstein-Zernikc (OZ) equations
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The right hand side of Eq. (23) also features the dimensionless and screened Coulomb potential
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with the dimensionless static electron fluid dielectric function (q). Close to criticality, one expects a characteristic diverging behavior of the correlation length, so that
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 with  = 0.5, in a standard mean field OZ approximation.

Superelastic LVISD


The introduction of expression (21) into Eq. (19), thus yields for 
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demonstrating that present (-diverging behavior is compensated by that in Eq. (21). 


Now we pay attention to correlation length estimates by solving simultaneously OZ equations with the Hypernetted Chain (HNC) equations 
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valid for any  (i  values



Lindhard screening involves (cf Fig. 7)
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RIGID  ELECTRON  NEUTRALIZING BACKGROUND
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FIG. 7- Plot of the reduced squared correlation length ((/a1)2 in terms of rs along a critical and vertical line (34% He, ( = 60) with Lindhard screening. Here, (2 remains negative.
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Fig. 8- PBIM model B with Hubbard screening. Plot of the reduced squared correlation length 
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 as a function of rs along a critical and vertical line (75% He at (= 60).(2 is now allowed to change sign for 
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On Fig.8 critical demixtion occurs at C2=0.75 in lieu of C2=0.34 on Fig. 7 for same ( = 60. More importantly, (2 is now allowed to increase positive on the largest rs range side.


The resulting correlation length is now raising strongly when (t(( 0, up to the standard mean field behavior 
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The given LVISD is now negative featuring a superelastic interaction between the low velocity incoming ion projectile and the PBIMB target.


It can also be appreciated that before turning negative, the given LVISD vanishes for 
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6. FINAL REMARKS

   The present developments highlight for the first time the intriguing interplay of a first order demixing process in a strongly coupled and binary ionic mixture with a low velocity incoming ion beam. The latter may be envisioned for diagnostics purposes or target conditioning in the subfields of ICF and Warm Dense Matter, for instance.

   Within a fundamental statistical physics perspective, it should be appreciated that the above results document unambiguously the potentialities of probing collective very long wavelength phenomena occuring in a plasma target with low velocity ion beams via the evaluation of a transport coefficient, featured in the present context by a stopping power mechanism.

   More generally, the SSM demonstrates itself as an efficient model supporting code calculations for ICF particle driven fusion as well as for WDM purposes. Moreover, it is flexible enough to acomodate extentions including multiple scattering and low velocity ion slowing down in arbitrary coupled target plasmas.
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