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» Standard Stopping Model
(SSM)

» Stopping Plasma Quantitatively Renforced
(SPQR)



Stopping standard model: basic facts
and assumptions

- Intense ion beams appear dilute in target

- Rectilinear trajectories

- Pointlike projectiles

- Nonrelativistic regime (8 < 0.35), 8=V »’C

- Def-scaling -AE/E = nf/E2

- Prefactor 4nZje “n/m VP dominant for E/A between
1 MeV/amu and 1 GeV/amu

- Log terms dominant at very small (end-of-range) and
very large projectile velocity
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lon Stopping in Hot-Dense Plasmas
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SP R2 Charge State distribution of CI™*
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/\/ON LlNEAQ CORRECTION5

Bloch term

Within the SSM framework outlined it is now straight-

forward to complete the stopping expression with Barkas ~ Z;’, and Bloch ._ Z

terms as well. In cold gas, those latter are no longer negligible when the

Born parameter Z,Vp /(Vg +V;‘f,)”2 is comparable to 1. Vg =1 in

atomic units. Vi is the thermal velocity of plasma electrons. Retaining

also the very small target-ion contribution, one thus gets a more accurate

stopping expression SSM B B
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and mp=«/4nezne/'me, the plasma frequency of the target free
electrons.



Table 3.6

Relative importance of Bloch and Barkas terms for cold-gas and plasma target.
The target has a linear density of free electron ne = 1.5 x 1019 cm-2

[D. Gardes, G. Maynard et al., Phys. Rev. 146, 5101 (1992)]

Bethe

Barkas Bloch

E Gas Plasmas Gas Plasmas Gas Plasmas Gas Plasmas
Ton (MeV/amu)
Cé4+ 2 0.56 0.62 5.63 12.48 0.08 0 -0.3 -0.35
S7+ 1 1.75 2.07 4.94 11.79 0.35 0 -1.16 -1.32

1.5 1.43 1.69 5.34 12.2 0.23 0 -0.98 «1.13

2 1.24 1.47 5.63 12.48 0.18 0 -0.85 -1.00
Bré+ 0.93 2.79 3.45 4.86 11.72 0.64 0 -1.61 -1.82




~ Strategy: maximize uniformity and the efficient use of
beam energy by placing center of foil at Bragg peak

In simplest example, target is a foil of solid or “foam” metal
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Multiple scattering of slow Ions in a
Partially Degenerate Electron Fluid



A. SINGLE SCATTERING

Adapting the T = 0 formalism (cf. [14] and [6] for the ion projectile

scattering probability expressed as

4 2 -
F g
A =\2(Cl;| Im[__‘ ]6(hu)—hﬁ.\7p),
d’gdo  n“q e(q,0

with a pointlike projectile form factor F(q) = Ze, Z being the ion charge, and

using the splitting d3q = dzq 1 dqy relative to initial beam velocity vp we get

2 3
d2P ) Jd3P .
d”q d°q

1 dq 2 -1
hn™ ) Q1 +qj DO Nw=q,yv,

expressing the probability of ion projectile differential scattering yielding its
angular deflections in single scattering events, through inclusion of the target

electrons collective screening properties yields

dp
—=v,.xG .
dq, P vr(q,)
where
47%e*m? 1 1
Gyr (q)) =—~§~-ql-f : dq ,
h*n (@2 +q2)? .
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'B- MULTIPLE SCATTERING
Général

From the density probability function we can access the differential cross-section for ion multiple scattering in a
PDEF (Partially Degenerate Electron Fluid). At a given transverse momentum transfer 4q,, this quantity writes as

1 1
dP =—-'Gyr(q,) (6)

DeVp Ne

do =

with angular ion deflection 1 taken in the small-angle approximation #q, =Mpvpy , with the ion projectile mass M.

We then turn to the convolution of the multiple scattering events, as the particle penetrates a distance X
within the solid. It is usually represented by the multiple-scattering (MS) function f(ot,X) which yields the statistical
distribution of particles with a total angular deflection . So we can express the electronic multiple-scattering (EMS)
function in the form F(0.X)dQ = f(c.X)dQ/2x, where f(c,X) is given in the small-angle approximation by

f(c,X) = [xdkTq (ko) exp e X0 (0 (7
0

The function og(x) defined scatterin is determined from the previously g function Gyr(q,),
for the present case of a PDEF, which takes the form

ooyt (K) = [[1-Jo(xy Ko

jo.0]

e L 1= JU[ quh
Mlvp

‘Gyr(qy)dq; , &)
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e=T/T,
a2 (in degrees) in terms of T/Tg in an electron target with density rg = 1.5 and thickness X =

800 a.u. (0.0424 pm). k = 1.

with q, qualifying a classical and non-degenerate upper bound. In this

connection, it is worthwhile to notice that replacing the given infinite upper limit

by the fully degenerate 2qg one, does not change significantly oy(k) estimate.
Finally we reach the angular distribution function explained at Eq. (12)

for a given penetration depth X in target.
HWHM angle aq,;

Analysis of quadrature of the previous reached essentially relies on a./,
the half-angle at half-maximum, fulfilling f(a.X) =f(0.X)/2. The usefulness of
this concept is successively highlighted through its T-dependence, X-

dependence, v,-dependence as well as n,, (or ry)-dependence.

The T-dependence is documented as a monotoneous decay for a PDEF
target > 1 with n, ~ 4.8 x 10> and a thickness X = 0.0424 um (800 a.u.),
while the strongly degenerate regime (6 < 1) features a nearly horizontal

plateau.



Proton beams may miss the target

through multiple scattering
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tecting gold foil, the transverse dispersion is rather large

E =15 MeV, D = 2.7 mm, 30um gold foil,
99% of the protons are outside Rc (16pum)
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Even for a protecting foil close to the target,
the dispersion is large, when considering

a broad energy distribution

D=0.5 mm, 30 um gold foil, energy distribution of present LULI source

-120

-80

-40

0 40 80 120 530 540
X (pm) z (pm)

M. BARRIGA-CARRASCO, G. MAYNARD

Deposition
energy
per proton
(keV) in the
compressed
fuel

550

560




Efficiency of energy deposition can be
estimated through a simple formula for the
width of the distribution In the transverse
plane

c(um)=0.07 \/&(um) (D +38)(um)
Ep(MeV)—0.156(um)/Ep(MeV)
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Typical example of the energy distributions of a proton beam with
radius R generated by a LPS created by the 30J. 300 fs pulse of the
100 TW laser, at LULLI, Palaiseau.



BINARY and MULTI-IONIC
MIXTURES



The basic LIVSD behavior is, as well-known of the form

in the low ion projectile velocity limit advocated previously with energy/nucleon E/A < 100
keV/amu.

Within the dielectric framework of present concern, we consider the
electromagnetic response of a target plasma built on electrons and ion species (Z;, M,). The
target ion part is taken here as a weakly coupled binary ionic mixture (BIM), which will
prove sufficient in the subsequent considered plasma targets. In such an approach, it appears
useful to work wtih the overall dielectric function

e )]

with the usual Fried-Conte dispersion function W(Im¢ = 0)
7 2
1 _ xe~ X 12
W(c)E—— lim |dx
(g):'\/ZTC v—>0+J X——iv

—Q0

and X(8)=ReW({), Y(2)=ImW({).

Cf P. Fromy, B. Tashev and C Deutsch. PRSTAB 13, 101302 (2010) and EPL 92, 15002 (2010)



Generalizing the standard one-component stopping quadrature

+1
{d_E}:ZZND [Fmax gy ksJ du LY (uvp)
2
dxJ (2m)° o 1 E<2+X(pvp)]z+Y2(uvp)

with Z = Z /Ny, where Z . denotes the projectile effective charge at velocity v,, Np=nA%y,
In terms of target electron density and corresponding Debye length. In the sequel, v, will be
scaled by , thermal electron velocity with T, thermalized target temperature.

2,2 2 12
(III Vp +V 2M4|Vy +V W
Min ( p the) p theJ

L Zeff 62 ’ h

kmax =

:Min(4—zn(v%+2), 8142Np — v%+2J
Vthe

Where v, is now dimensionless on the second line on the right-hand-side. a=1/137 is
the fine structure constant, and c, light velocity.



In adapting to BIM stopping, it proves convenient to introduce the relative ion
concentration of species 1, i.e

N1
N1 +N>2

o=

in terms of ion number N, with i = 1,2, in target plasma, so that BIM densities

nea’ nzzne(i_a), ZzZlowZz(l—oc)

n1=——

are straightforwardly expressed in terms of electron density n,
Then, we can estimate the stopping contributions of every target
component : electron (0), ion 1 and ion 2 as follows

1
“9Eo_cy jkmaxo gk k2 f gu YL
dx _1 DIk, pv]

1
dE1_C Ikmaxl dk k3 f MY[‘\/Ml MV]

dx D[k, pv]

I\/Iz uv

dEZ—C J'kmaxz dk k3 J
dx

kuv
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Proton Stopping in polyimide (Kapton)
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Low Velocity Ion Slowing Down in a Demixing
Binary Ionic Mixture

We consider ion projectile slowing down at low velocity Vp < Vthe, target thermal electron
velocity, in a strongly coupled and demixing H-He ionic mixture, It is investigated in terms of
quasi-static and critical charge-charge structure factors. Non-polarizable as well as polarizable
partially degenerate electron backgrounds are given attention. The low velocity ion slowing
down turns negative in the presence of long wavelength and low frequency hydromodes,
signaling a critical demixtion. This process documents an energy transfer from target ion
plasma to the incoming ion projectile.



Whitin a dielectric framework for target particles, the nonrelativistic ion stopping thus reads as

which can be straightforwardly reexpressed in terms of the ion charge-ion charge structure factor when switching to
very low

Vp < Vﬂ]i = Cl\;’m + CZVﬂ'lZ 2

with Vi, thermal velocity and C;j, relative concentration of ion i.

with the usual electron £(q,w) now extended to the ion components building up the BIM, and the charge-charge
structure factor

2
Su@= 3 (cap)*ZaZgSep(@
of=1

where C;+Cy = 1. C; refers to concentration of species i within a BIM built on target ion charges Z; and Z5.

Focussing attention on the slow and long wavelength hydromodes w—0, g—0 monitoring BIM demixing, one can
safely restrict Eq. (1) to its static limit w—0

(1)



Critical S,; (q)

Mean field classical description of BIM demixing could be rather straightforwardly explained with the static
charge-charge structure factor

(2)

where (=

T-T, ... . . .
¢ T, = critical temperature, y = 1 and & = jon-ion correlation length featuring lim &> .
c —(}
?Z.F = C121 + CzZz and T = C[FI + Czrz.
¥ denotes a constant normalizing factor accessed through the sum rule (q in Ei")

(where ;? =Cia, +Cray)

where 22 =1+ CyCy(Z; - Zy)2 1 Z2.

Expression (2) mostly emphasizes long distance hydromodes, of significance at critical demixtion.



Paying a first attention to nonpolarizable BIM with a fixed and rigid electron background, the correlation length

reads as
- .’

where Dy and Dr respectively denote the ¢ — 0 limit of
D@ =Z* -C,Cy[ A Ch @+ AT @-2212,Ch @)
and

T

Dr@=1-c,CR @ -2Ch (@ -cic, deffCip(a)

in terms of

CRe@=Cup@+Z,Z¥(Q) 3)

Eﬁﬁ (q) denotes the partial direct correlation function, viewed in the Ornstein-Zernikc (0Z) equations

Z “ 2 = e
haﬁ(k}=CuB(Q)+ E]thav(q)cvﬁ(q) :

The right hand side of Eq. (3) also features the dimensionless and screened Coulomb potential

with the dimensionless static electron fluid dielectric function (q). Close to criticality, one expects a characteristic
diverging behavior of the correlation length, so that

with v=10.5, in a standard mean field OZ approximation.




Superelastic LVISD

The introduction of expression (?) into Eq. (3), thus yields for ga; <1 ,

demonstrating that E-diverging behavior is compensated by that in Eq. (?).

Now we pay attention to correlation length estimates by solving simultaneously OZ equs with the Hypernetted
Chain (HNC) equations

2op(1) = expl hop (- (CRg (1)
valid for any ['; values

Lindhard screening involves (cf Fig. 1)

k2 + kgL (%)

k) =——1 .

1/2
where kyg =(6:meezr' EF) denotes the Thomas-Fermi wave vector and the function g (x) depends only on the

dimensionless variable x = k/2kFp, with

1 1-x2

1+x
X)=—+
21.(x) 2  4x

1-x

o

E
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FIG. 1- Plot of the reduced squared correlation length (E/a; )2 in terms of r along a critical and vertical line (34% He, I
: s g 2 i i
= 60) with Lindhard screening. There £ remains negative.

UNPHYSICAL SITUATION



POLARIZED ELECTRON BACKGROUND
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Fig. 2- PBIM model B with Hubbard screening. Plot og the reduced squared correlation length (%l a; )2 as a function of
15 along a critical and vertical line {75% He at T'=60) £ is now allowed to change sign for rg 21 .

On Fig.2 critical demixtion occurs at C2=0.75 in lieu of C3=0.34 on Fig. 1 for same I" = 60. More importantly, E2 is now
allowed to increase positive on the largest rg range side.

The resulting correlation length is now raising strongly when |t|— 0, up to the standard mean field behavior
2
(Elap)" > 1.

The given LVISD is now negative featuring a superelastic interaction between the low velocity incoming ion
projectile and the PBIMB target.

Tt can also be appreciated that before turning negative, LVISD vanishes for (‘glal)2 ~1.65.



FINAL REMARKS

The present development highlight for the first time the intriguing interplay of a first order
demixing process in a strongly coupled and binary ionic mixture with a low velocity incoming ion
beam. The latter may be envisioned for diagnostics purposes or target conditioning in the subfields
of ICF and Warm Dense Matter, for instance.

Within a fundamental statistical physics perspective, it should be appreciated that the above
results documents unambiguously the potentialities of probing collective very long wavelength
phenomena occuring in a plasma target with low velocity ion beams via the evaluation of a
transport coefficient, featured in the present context by a stopping power mechanism.
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