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Liquids are useful to mitigate effects
of microexplosions

X rays & debris—evaporation and impulse
*Neutrons—isochoric heating impulse & mat’l damage

*Gas filled chambers handle x rays and debris for low
yield high pulse rate long standoff from final optics

*Neutrons with gas filled chambers result in short
chamber lifetime




Rationale for thick liquid walls
Liquid candidates: Li,BeF,, Li, LiPb
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1-Life of the plant wall material
2-Shallow burial of plant structures
at end of life




For the same damage liquid lithium being 3
times less dense must be about 3 times thicker
than Li,BeF,
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Burke proposed a spinning liquid apparatus for
flowing liquid showing motors, seals, etc,
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UC Berkeley worked on modeling and experiments in
support of vortex chamber concept (no moving parts)
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Blascon, a liquid lithium vortex chamber
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Liquid jets and a vortex chamber protect solid
structures for the life of the plant

Vented end jet shields

@ et protection
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No moving parts

Final optics protection is important




HYLIFE-Il is a thick liquid wall chamber design
for heavy ion fusion (HIF)
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/ Indirect drive targets, multi-beam
induction linac driver
e Liquid is molten salt — flibe or flinabe
5 ——=- Effective shielding thickness is 56 cm
R Chamber is lifetime component
Oscillating jets dynamically clear droplets
near target (clear path for next pulse).
Allowed compact chamber, short beam
propagation distance
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Ref. - S.S Yu et al., Fusion Science and Technology, 44,
No.2, 266 (2003).




Integration of the chamber, target
and final optics is a big deal!
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Robust Point Design did this.




Liquid protected final optics needs small half-angle
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Is the X-target next?
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Burke’s Fusion Power Corp design uses liquid Li
Final optics shield at 3 m
30 cm of Li around target

final lens (8 total)
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Additions to cylindrical pellet with fast ignition by Basko, Meyer-ter-Vehn, et al.

Long range ions drive

Tamper layer implosion of cylinder barrel
Absorber layer
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H hort range ions drive
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v chamber heat, and
prOVides stable Beam wobbling and spiral not shown.

trajectory fo r ta rg etl ng . Short-range ions burn through blow-off (or casing on axis) to assist penetration for Fast Ignition.

R. Burke and J. Cutting, Argonne National Laboratory, 1974 Additional features use beams with substantially different stopping ranges,
Transactions IEEE, Spring 1974

which is enabled by Telescoping Beams of Multiple Isotopes.




Chamber Vault

design factors: Neutrons, Fire, Availability, Maintenance
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Chamber Functions: Ready to Pulse

» Vacuum restored for ion beam
* Lithium deployed to handle neutrons and blast
* Fuel charge In position
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Chamber Functions: Handling energy

» Conducting high temperature heat to exchangers
» Maintaining low wall temperature
« Evacuating gases
« Starting injection of next fuel assembly
energy propagation to heat exchanger
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FPC Chamber Functions

Safe confinement of fusion energy and tritium
 Protect vessel materials from neutrons

» Reestablish vacuum for ignition beam propagation
* Deliver high temperature heat® to heat exchangers

Chamber materials at low temperature®
— Cooled by lithium incoming ~20°C above 185°C melt point
— Low chamber erosion
— Push HX per normal engineering and economics practice
— Nb-Zr tubing good for 1300°C lithium?

* Unique to FPC concept

1.“Development of Advanced High Temperature Heat Exchangers”, proposal to U.S.D.O.E., Office of Nuclear Energy,
Science & Technology, by University of Nevada, Las Vegas Research Foundation July 11, 2003




Conclusions

Liquid wall chambers are there for HIF

* They require demanding integration of target and final optics
with chamber

* Final optics stand-off distance is a super important
parameter

* Multiple options exist: vortex, droplets, oscillating and
stationary jets,

« Hydraulic design called for

HIF needs a target desi
and integrate with cham er and final

optics




