

U.S. MAGNET DEVELOPMENT PROGRAM

A brief update to APC Nb₃Sn

Xingchen Xu

Fermi National Accelerator Laboratory

This work has been supported by Fermilab LDRD and HTR SBIR DE-SC0013849 and DE-SC0017755 by US DOE.

Confirmation of high $B_{c2}(B_{irr})$ in ternary APC conductors

New wires been made since last NHMFL test in Sept. 2018. New tests in late Jan. 2019. Reported here.

EDS Line scans

measured by lan

Pong at LBNL ->

23.0

22.5

22.0

0.0

TT-T3025 (Nb-7.5wt.%Ta, no

0.4

Fraction of the Nb₂Sn layer

0.2

PIT-B31284 (Nb-7.5wt.%Ta, no O)

0.8

1.0

06

What accounts for the high Birr (Bc2) in the APC wires Answer: better stoichiometry.

A theory for Nb3Sn stoichiometry (backup slide).

Office of

Science

J_c in most recent APC conductors

Many thanks to David and ASC for the J_c rig, PS, DAQ, etc., and to Griffin for the help in the J_c tests in NHMFL.

- 2. Lower HT temperature (675 or 685 °C) leads to substantially higher Jc than 700°C.
- 3. Still need more heat treatment optimization.

Paths to further improvement

The progress in J_c was mainly driven by improvement of recipe, which allows formation of more A15.

01/2019: T3912-0.71mm-700C/71h

09/2018: T3882-0.84-675C/330h

00000000				Development is still ongoing. Further optimization		
				of recipe. The goal: similar to standard PIT wires.		
FG Nb ₃ Sn % Residual Nb% 22% 45%	FG Nb ₃ Sn % 32%	Residual Nb% 33%		The goal: FG Nb ₃ Sn % 40%	Residual Nb% 25%	

Other aspects for further improvement:

- (1) Improving filament uniformity
- (2) Heat treatment optimization

Conclusion: more work needed

- These results demonstrate improved J_c, but these APC wires are still in the prototype stage, and much more work is required: further optimization in recipe and heat treatment, fabrication of 217-restack wires, better fabrication for cabling, and other necessary tests.
- There are also other interesting ideas, like the FSU Hf w/o O method, which the monofilament results show is promising.
- There still seems to be some room for Nb₃Sn conductors.

Backup slide: a theory for the Nb₃Sn stoichiometry

 Nb_3Sn layer grows in a Sn source/ Nb_3Sn/Nb diffusion couple at reaction temperature:

For details of this theory:

- (1) Xu and Sumption, Sci. Rep. 6 19096, 2016
- (2) Xu, Supercond. Sci. Technol. 30, 093001, 2017

Why internal oxidation improves Sn content?
(1) Finer grain size → higher diffusion rate.
(2) Lower reaction rate → higher Sn content.

APC wires have slower layer growth rate.

I. Thermodynamic part: chemical potential of Sn

The relation between $\mu_{Sn}(X_{Sn})$ of Cu-Sn and $\mu_{Sn}(X_{Sn})$ of Nb₃Sn is important. $\mu_{Sn}(Cu-7 \text{ at.}\% \text{ Sn}) \ge \mu_{Sn}(\text{Nb-24 at.}\% \text{ Sn}); \mu_{Sn}(X_{Sn})$ of Nb₃Sn must concave up.

II. Kinetic part: competition between diffusion rate and reaction rate

A competition between two processes determines the V_{Sn} fraction in the frontier Nb₃Sn layer: the reaction at the interface produces V_{Sn} s, while the diffusion of Sn along Nb₃Sn grain boundaries fills these V_{Sn} s. Higher diffusion rate relative to reaction rate benefits Nb₃Sn stoichiometry.

