Specific heat measurements on epoxy samples CTD 528 and CTD 528-5vol% Gd₂O₃

Chiara Tarantini (NHMFL-FSU), ShijianYin and Tengming Shen (LBNL)

CTD 528: no significant difference applying field

Small variation of the in-field specific heat

CTD 528 – 5vol%. Gd_2O_3 : clear suppression at 16 T

Comparison with and without Gd_2O_3

- At 16 T, the epoxy with Gd_2O_3 still has high specific heat at low temperature despite the suppression induced by the field The best emitting the superstant of the supe
 - The heat capacity is lower at high temperature for the sample with Gd_2O_3

New data on CTD528+5%vol Gd₂O₃ including intermediate fields

Strong field dependence in particular above 8 T

The suppression is particularly obvious above 8 T at the low temperature

Conclusions

- These results show that the positive effect of Gd oxide significantly changes with applied field, in particular for field larger than 8 T.
- Gd₂O₃ might still be useful for the low field behavior suppressing flux-jump but the effect at 16 T is limited
 - At the lowest temperature is only a 2.6 times better than the sample without oxide at 16 T (against almost 28 times at 0T)
- At high temperature the specific heat of the epoxy with Gd_2O_3 is slightly lower than without
 - This could be beneficial because it increases the thermal diffusion

Specific heat measurements on Cu+Gd₂O₃ wire

Chiara Tarantini (NHMFL-FSU), Xingchen Xu (FNAL)

Strong field dependence with opposite trend at low and high temperature

- At low temperature the specific heat is strongly suppressed with increasing field
- At higher temperature (~18-20K) the specific heat clearly increases

At low T, stronger field dependence above 8 T

At the lowest temperature the specific heat always decreases with increasing field in particular above 8 T

• At low temperature specific heat of $Cu+Gd_2O_3$ is still larger than Cu

Conclusions

- The specific heat of $Cu+Gd_2O_3$ is strongly field dependent with opposite behavior at low and high temperature
- Despite the clear suppression, the specific heat of Cu+Gd₂O₃ at low temperature is still larger than Cu
 - Potentially good for stabilization
- At larger temperature the in-field specific heat of Cu+Gd₂O₃ becomes larger than for Cu (more than 2X at 12 K and 16 T)
 - The implication from the quench protection point of view should be evaluated
 - The largest the specific heat, the smallest the thermal diffusion

