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Experimental data is old, data sets are incompatible, and errors 
are likely underestimated!

• Pion-Pion scattering is extremely 
important in modern particle 
experiments!


• Heroic efforts to parameterize pion-
pion scattering - still ongoing, see 
Pablo Rabán’s poster tomorrow! 

• Data comes from several older 
experiments 

• The shaded region is the error band—
It’s extremely narrow!



Neural Network = Complicated, arbitrarily 
scalable function


NN’s provide extremely flexible models for 
fitting data
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Neural Network = Complicated, arbitrarily 
scalable function


NN’s provide extremely flexible models for 
fitting data

• Less model dependence - we don’t know the right answer!


• Lower computational costs (one and done?)


• Established codebases - efficient use of computing resources


• $$$

Why use NNs for physics?

Neural Networks



Overall Strategy
• Use neural network in place of human-writable 

model: 
 

• Train many neural networks on re-sampled data to 
produce a Monte Carlo-esque sample of models 
(think NNPDF) 

• Error bars determined from the ensemble of the 
neural networks rather than from a single fit 

• All physics content must be enforced by carefully 
constructed loss function!
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NN : E → {(ω(I)ω , ε(I)ω )}

https://thatsmaths.com/2020/05/28/the-monte-carlo-method/



• MSE easily minimized due to the flexibility of even a simple NN (beware overfitting!)


•  contains discrepancies from Roy-like equations (enforcement of dispersion 
relation, analyticity, crossing symmetry)


•  forces the neural network to respect high-energy dominance of regge 
physics


• ’s are Lagrange multipliers that can be tuned/adjusted on the fly.

ΔRoy

MSERegge

λ

Loss function

Fit the data Satisfy physics Match high-energy Regge

LOSS = MSE + λRoyΔRoy + MSEReggeλRegge



• The dispersive integral is in the loss function 
 
 

• Subtraction terms need to be predicted as well! 

• Data from different experiments, or from different isospins/partial waves can be turned 
on/off or multiplied by additional ’s at will 

• Additional constraints are no problem! Sum rules, continuity at transition to Regge, etc. 

λ

LOSS = MSE + λRoyΔRoy + MSEReggeλRegge

λSR ΔSRLOSS + =
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Noha Nekamiche: https://medium.com/aiguys/curriculum-learning-83b1b2221f33

How to train a NN?
• Curriculum-based learning: Slowly increase weighting 

of Roy part of loss 

• Force model weights to decay to combat overfitting 

• Partial waves not made equal! Allow model to 
adaptively prioritize underperforming waves by 
readjusting weights 

• Avoid large perturbations in weights when we’re doing 
well -> Lower learning rate (velocity of parameter 
change) 

• Not currently interested in high-energy description:

LOSS = MSE + λRoyΔRoy + MSEReggeλRegge

https://medium.com/@hn_nekamiche?source=post_page---byline--83b1b2221f33---------------------------------------


• 50k parameters! 

• Replicas re-sampled assuming 
gaussian errors


• Curriculum phases apparent 
from loss vs epoch



Preliminary ensemble (~2k NNs)

Preliminary



Diagnostics: Subtractions and Weights

• Clustering of subtraction terms - capturing something real? (ChiPT 
predictions of scattering lengths?) 

• Many weights near zero: We have more than enough parameters to span 
the space of solutions!



Diagnostics: MSE and Roy Losses

• Unweighted MSE and Roy histograms look reasonable


• Potential cuts in Roy loss?


• No major correlations in the MSE and Roy losses



Takeaways
50k parameter NN

the hadron spectrum

scattering matrix principles

learning AI

nuclear physics

• (Almost) fully model-independent description of  
scattering is possible 

• Error estimates from Monte-Carlo replicas are 
significantly increased due to model flexibility


• Discrimination of incompatible experimental data 
may be possible 

• Resonance extraction soon!

ππ


