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The pion-pion scattering amplitude. IV:
Improved analysis with once subtracted Roy-like equations up to 1100 MeV
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Experimental data is old, data sets are incompatible, and errors
are likely underestimated!



Neural Networks

Neural Network = Complicated, arbitrarily
scalable function

NN'’s provide extremely flexible models for
fitting data
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Less model dependence - we don’t know the right answer!

Lower computational costs (one and done?)

Established codebases - efficient use of computing resources
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Use neural network in place of human-writable
mOd el : Monte Carlo i1
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Train many neural networks on re-sampled data to

produce a Monte Carlo-esque sample of models
(think NNPDF)

Error bars determined from the ensemble of the
neural networks rather than from a single fit

All physics content must be enforced by carefully SR e L
CO n Stru Cted IOSS fu n Ct i O n ! Figure 2: Squares with zero, 250, 2500 and 25000 points.

https://thatsmaths.com/2020/05/28/the-monte-carlo-method/




Loss function

LOSS — MSE + /IROyAROy T /IRegge MSERegge

/ I T

Fit the data Satisfy physics Match high-energy Regge

MSE easily minimized due to the flexibility of even a simple NN (beware overfitting!)

A Roy contains discrepancies from Roy-like equations (enforcement of dispersion
relation, analyticity, crossing symmetry)

MSER,.. .. forces the neural network to respect high-energy dominance of regge
physics

A’s are Lagrange multipliers that can be tuned/adjusted on the fly.



Loss function

LOSS = MSE + Agoy T MSEgegge
The dispersive integral is in the loss function
A =|Re th(s) — ST} (s) — DT/ (s ~ » PV, AMz ds' K1 Tm tL (s)
I,

Subtraction terms need to be predicted as well!

Data from different experiments, or from different isospins/partial waves can be turned
on/off or multiplied by additional A’s at will

Additional constraints are no problem! Sum rules, continuity at transition to Regge, etc.

LOSS 4 = ASR



How to train a NN? o

Curriculum-based learning: Slowly increase weighting .
of Roy part of loss \,

Force model weights to decay to combat overfitting

Performance Measure
‘P’
A

Partial waves not made equal! Allow model to
adaptively prioritize underperforming waves by
readjusting weights

Avoid large perturbations in weights when we’re doing
well -> Lower learning rate (velocity of parameter . : .
change) cosy Vo Vo ard

Not currently interested in high-energy description: Mode a
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Noha Nekamiche: https://medium.com/aiguys/curriculum-learning-83b1b2221f33



https://medium.com/@hn_nekamiche?source=post_page---byline--83b1b2221f33---------------------------------------

Training History
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Density

Diagnostics: Subtractions and Weights

Subtraction constant parameters (a)
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» Clustering of subtraction terms - capturing something real? (ChiPT
predictions of scattering lengths?)

 Many weights near zero: We have more than enough parameters to span

the space of solutions!



Diagnostics: MSE and Roy Losses

MSE Loss Distribution Roy Loss Distribution MSE vs Roy Loss
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 Unweighted MSE and Roy histograms look reasonable
* Potential cuts in Roy loss?

 No major correlations in the MSE and Roy losses



Takeaways

(Almost) fully model-independent description of 77
scattering is possible

Error estimates from Monte-Carlo replicas are
significantly increased due to model flexibility

Discrimination of incompatible experimental data
may be possible

Resonance extraction soon!

YOORE TRYING TO PREDICT THE RBEHAVIOR

OF ? JUST MOPEL
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SOME. SECONDARY TERMS To ACCOUNT FOR

scattering matrix principles .

EASY, RIGHT?
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LIBERAL-ARTE MATORS MAY BE ANNOYING SOMETIMES
BUT THERES NOTH/NG MORE OBNOXIOUS THAN

APHYSICIST FIRST




