Exotic T_{bc} tetraquarks from Lattice QCD

Archana Radhakrishnan Tata Institute of Fundamental Research, Mumbai Multi-Particle Reactions Workshop, Berkeley

In collaboration with

Nilmani Mathur TIFR, Mumbai

Padmanath M IMSc, Chennai

Tetraquarks

- Jaffe first proposed tetraquarks in 1977
- \bullet First experimental observation only in 2003 of X(3872) by Belle 1 MeV below DD^* threshold

- T_{cc} seen by LHCb in 2021
- \bullet 273 keV below DD^* threshold
- Proposals by experiments to look for other candidates

Tetraquarks

• Tetraquark candidates and their plausible valence quark content - most of them are hidden flavor candidates

States	Quark Content
$X_0(2900), X_1(2900)$	$ar{c}dar{u}s$
$X_{c1}(3872)$	$c \overline{c} q \overline{q}$
$Z_{c}(3900), Z_{c}(4020), Z_{c}(4050), X(4100), Z_{c}(4200), Z_{c}(4430), R_{c0}(4240)$	$c \overline{c} u \overline{d}$
$Z_{cs}(3985), Z_{cs}(4000), Z_{cs}(4220)$	$c \overline{c} u \overline{s}$
$X_{c1}(4140), X_{c1}(4274), X_{c0}(4500), X_{c0}(4700), X(4630), X(4685), X(4740)$	$c\bar{c}s\bar{s}$
X(6900)	$c\overline{c}c\overline{c}$
$Z_b(10610), Z_b(10650)$	$b\overline{b}u\overline{d}$

 \bullet Heavy-light tetraquarks $(QQ'\bar{q}\bar{q}')$ are prime candidates to be bound and therefore long-lived

Phys. Rev. D 25, 2370

Phys. Lett., B123:449-451, 1983

Lattice Methodology

The time dependence of two point correlation functions gives discrete energy levels that depend on the volume of the lattice

0.05

Map the discrete energy levels to the scattering amplitudes

Continuum and chiral extrapolation to get the binding energies at physical point

The T_{cc}

States near threshold

$cc\bar{u}\bar{d}$ $0(1^+)$

Padmanath et al. PRL. 129 (2022)

Exploring tetraquarks with bottom and charm may be accessible to experiments Motivates the study of *bcūd* but significant volume effects possible - close to threshold

$QQ'\bar{q}\bar{q}'$ states on the lattice

	Type	I(J	$^{P})$		$E_B[MeV]$	$a_0[{ m fm}]$	$r_0[\mathrm{fm}]$	Study		Method	Comments
	T^{ud}_{bb}	0(1	+)	-57(19	θ) to -30(17)			[3]	static potential	
					-90(40)			[127,	, 128]	static potential	single channel
					-59^{+30}_{-38}			[13	31]	static potential	coupled channel
					-189(10)			[4	4]	spectrum	
				-143(34)			[1	34]	spectrum		
			-128(34)			[6	9]	spectrum			
				-189(18)			[14	40]	spectrum		
			-113			[7	'8]	spectrum	preliminary		
			-112(13)			[4	1]	spectrum			
			-155(17)			[152]		HAL potential	single channel		
			-83(10)	-0.43(5)	0.18(6)	[1	52]	HAL potential	coupled channel		
		$-100(10) \begin{pmatrix} +36\\ -43 \end{pmatrix}$				[162]		spectrum			
T^{ud}_{bb} 0(0 ⁺)			-5(18))		[134]		spectrum			
Typ	be I(.	$J^P)$	$E_B[MeV]$		$a_0[{ m fm}]$	$r_0[{ m fm}]$			Study	Method	Comments
T_{cc}^{ud}	0(1	l ⁺)	not resonant					[77]		spectrum	
	·	,	-23(11)						[134]	spectrum	
			_	$9.9^{+3.6}_{-7.2}$	1.04(29)	$0.96\left(^{+0.18}_{-0.20} ight)$			[<mark>68</mark>]	spectrum	heavy charm
			-1	$5.0^{+4.6}_{-9.3}$	0.86(0.22)	0.	$92\left(^{+0.17}_{-0.19} ight)$		[68]	spectrum	light charm
			$-59\left(^{+53}_{-99} ight.$	$)\left(\substack{+2\\-67} ight) \ \Big $	$20(20)\left(\substack{+8\\-8} ight)$	1.	$12(3)\binom{+3}{-8}$	[147]		HAL potential	lattice m_{π}
			-4	$5\left(^{+41}_{-78} ight)$	-33(44)		1.12(3)		[147]	HAL potential	rescaled m_{π}
T^{ud}_{bb}	0(0)+)	not	bound					[134]	spectrum	

A.Francis (2025) arXiv: 2502.04701

Lattice details

- \bullet MILC ensembles NF=2+1+1 HISQ action.
- valence quarks were implemented using an overlap action (u, d, s, c).
- the evolution of the bottom quark was studied within a non-relativistic QCD framework.
- *b*, *c*, *s* at the physical point and light quark mass is varied.

Extraction of the energy spectrum

The time dependence of Euclidean two point correlation function gives the energy, $C(t) = \langle 0 | \mathcal{O}_f(t) \mathcal{O}_i^{\dagger}(0) | 0 \rangle$

Adding a complete set of states,

interpolate a

specific state

$$C(t) = \sum_{n} e^{-E_{n}t} Z_{n}^{f} Z_{n}^{i} \qquad \qquad Z_{\alpha}^{i} = \langle \alpha | \mathcal{O}_{i}^{\dagger} | 0 \rangle$$

time-evolution overlaps

at large times they are dominated by the ground state

Operators

Extraction of the energy spectrum

The time dependence of Euclidean two point correlation function gives the energy, $C(t) = \langle 0|\mathcal{O}_f(t)\mathcal{O}_i^{\dagger}(0)|0\rangle$

Adding a complete set of states,

at large times they are dominated by the ground state

$$C(t) = \sum_{n} e^{-E_{n}t} Z_{n}^{f} Z_{n}^{i} \qquad \qquad Z_{\alpha}^{i} = \langle \alpha | \mathcal{O}_{i}^{\dagger} | 0$$

time-evolution overlaps

$$m_{eff} = \ln \frac{C(t)}{C(t+1)}$$

Checking the "robustness of the ground state"

Extraction of the energy spectrum

 $egin{array}{rll} \mathcal{O}_1(x)&=&[ar{u}\gamma_ib][ar{d}\gamma_5c](x)-[ar{d}\gamma_ib][ar{u}\gamma_5c](x)\ \mathcal{O}_2(x)&=&[ar{u}\gamma_5b][ar{d}\gamma_ic](x)-[ar{d}\gamma_5b][ar{u}\gamma_ic](x)\ \mathcal{O}_3(x)&=&[(ar{u}^T\Gamma_5ar{d}-ar{d}^T\Gamma_5ar{u})(b\Gamma_ic)](x). \end{array}$

Normalized overlaps:

 $\tilde{Z}_i^{\alpha} = \frac{\langle \alpha | \mathcal{O}_i^{\dagger} | 0 \rangle}{\max_{\alpha} Z_i^{\alpha}}$

 DB^* operator has consistently large overlap to ground state

Diquark-antidiquark overlap to ground state increases as light quark masses decrease

 M_{ps} (GeV)

Finite Volume Spectra - $\bar{b}\bar{c}ud$

$\bar{b}\bar{c}ud \ 0(1^+)$

M. Padmanath, AR, Nilmani Mathur [PRL.132.201902]

- The binding energy decreases with the increasing light quark mass.
- Indicates the **presence of a real bound state** at physical quark mass.

$$a_o = 0.57(^{+4}_{-5})(17) \text{ fm}$$
 $\delta m_{T_{bc}} = -43(^{+6}_{-7})(^{+14}_{-24}) \text{ MeV}$

AR, M. Padmanath, Nilmani Mathur [Phys.Rev.D 110 (2024)]

- The binding energy decreases with the increasing light quark mass.
- Indicates the **presence of a real bound state** at physics quark mass.

$$a_o = 0.61(^{+3}_{-4})(18) \text{ fm}$$
 $\delta m_{T_{bc}} = -39(^{+4}_{-6})(^{+8}_{-18}) \text{ MeV}$

Comparison of T_{bc} binding energy results

AR, M. Padmanath, Nilmani Mathur [Phys.Rev.D 110 (2024)]

- Multiple channel analysis, more volumes, moving frames and multiple operators to better understand these tetraquarks from the lattice perspective.
- Relativistic bottom quarks?
- Since the $O(0^+)$ T_{bc} tetraquark is a bound state, will decay through the weak interaction only and could become the first tetraquark to be observed at the LHC with this feature.
- The $O(1^+)$ T_{bc} is expected to decay electromagnetically to $BD\gamma$
- The study of radiative transition

 $B^*D \rightarrow 0(1^+) T_{bc} \rightarrow BD\gamma$

can map the structure!