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Zooming out a little bit...

T. Doi-san’s KIBAN(S) abstract https://www.jsps.go.jp/.../23h05439.pdf

HAL QCD works:

■ J/ψN-ηc N (mπ = 146 MeV) Yan Lyu et al, Phys.Lett.B 860 (2025) 139178

■ Ωccc N, Λc N (mπ = 137 MeV) L. Zhang et al

■ D̄N (mπ = 137 MeV) WY et al, In prep. ← This work
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D̄N System: Motivation and Features

■ D̄ = c̄q and N = qqq: no qq̄ annihilation channel
⇒ Stable two-body system; possible exotic configurations (e.g.,
pentaquark?) cf. Tcc, Pc

■ Heavy Quark Spin Symmetry (HQSS): relatively small mass gap
between D̄ and D̄∗ meson
⇒ Contrast with KN system (e.g., Θ+)

■ In-medium properties of (anti-)D mesons:
□ Mass modifications in nuclear matter
□ Possible bound states (and excited states) with nuclei

(extension of kaonic nuclei, HQSS doublets)
□ QCD Kondo effect in charm sector?

■ Toward heavy-flavor analogues: extension to BN interactions

■ Scarce experimental data, strong model dependence
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Current status: Models and Experiment

■ SU(4) WT contact
J.Hofmann, M.F.M.Lutz, Nucl.Phys. A763 (2005) 90-139, D.Gamermann, et al, Phys.Rev. D81 (2010) 094016

■ Meson exchange models (+short range OGE)
Y. Yamaguchi, et al, Phys.Rev. D 84 (2011) 014032, J.Haidenbauer, et al, Eur.Phys.J. A33 (2007) 107-117

C.E. Fontoura, et al, Phys.Rev. C 87 (2) (2013) 025206, Y. Yamaguchi, et al, Phys.Rev. D 106, 094001 (2022)

122 A. Hosaka et al. / Progress in Particle and Nuclear Physics 96 (2017) 88–153

Table 6

Scattering lengths in the DN channel in various models. The isospin averaged scattering length aD is defined
in Eq. (4.1.25). All numbers are given in units of fm. The negative (positive) scattering length corresponds to
the repulsive (attractive) scattering at threshold. When a shallow bound state exists, the scattering length
becomes negative with a large magnitude. The results of Ref. [185] are given in Ref. [223] where the imag-
inary parts are found to be negligible. The results of Refs. [186,190] are shown in Ref. [191].

Model aI=0
DN aI=1

DN aD
SU(4) contact [185] �0.43 �0.41 �0.42
SU(4) contact [186] �0.57 + i 0.001 �1.47 + i 0.65 �1.25 + i 0.49
SU(8) contact [190] 0.004 + i 0.002 0.33 + i 0.05 0.29 + i 0.038
Meson exchange [191] �0.41 + i 0.04 �2.07 + i 0.57 �1.66 + i 0.44

Table 7

Scattering lengths in the D̄N channel in various models. The isospin averaged scattering
length aD̄ is defined in Eq. (4.1.25). All numbers are given in units of fm. The negative (posi-
tive) scattering length corresponds to the repulsive (attractive) scattering at threshold.When
a shallow bound state exists, the scattering length becomes negative with a large magni-
tude. Results of Ref. [192] are those in the ⇡⇢! model. The results of Ref. [185] are given in
Ref. [223].

Model aI=0
D̄N aI=1

D̄N aD̄
SU(4) contact [185] �0.16 �0.26 �0.24
Meson exchange [194] 0.07 �0.45 �0.32
Pion exchange [192] �4.38 �0.07 �1.15
Chiral quark model [219] 0.03–0.16 0.20–0.25 0.16–0.23

We summarize theDN scattering lengths in the SU(4) contact interactionmodels [185,186], the SU(8) contact interaction
model [190], and themeson exchangemodel [191,205] in Table 6. In the I = 0 sector, all models give amoderately repulsive
scattering length, except for the SU(8) contact interactionmodelwhich predicts veryweakly attractive value. It is remarkable
that the imaginary part is very small in all cases, indicating the transition to the ⇡⌃c channel is suppressed. In the I = 1
sector, the results are more scattered. The imaginary part is very small in Refs. [185,190] while it is sizable in Refs. [186,191].
A large negative scattering length of DN(I = 1) of the meson exchange model [191] is a consequence of the shallow quasi-
bound state which corresponds to ⌃c(2800).

As shown in Table 7, the D̄N scattering lengths are calculated in the SU(4) contact interaction model [185], the meson
exchange model [194], the pion-exchange model [192], and the chiral quark model [219]. The scattering lengths are in
general not very large and comparable with the ⇡N sector, except for the pion-exchange model where the I = 0 scattering
length is enhanced by the near-threshold bound state (see Table 4). We comment that the pion-exchange model without
the ⇢ and ! exchanges provides an attractive scattering length (aI=1

D̄N = 0.22 fm). However, the ⇢ and ! exchanges in the
diagonal component lead to the repulsive scattering length as shown in Table 7.

The DN/D̄N scattering length can be used to estimate the mass shift of the D/D̄ in the nuclear medium. Under the linear
density approximation [224], the mass shift of the D/D̄ meson in the symmetric nuclear matter is given by

�mD/D̄ = �2⇡
MN + mD

MNmD
⇢NaD/D̄, (4.1.24)

with the nucleonmassMN , theDmesonmassmD, and the normal nuclearmatter density ⇢N . The isospin averaged scattering
length is defined as

aD/D̄ =

aI=0
DN/D̄N + 3aI=1

DN/D̄N

4
. (4.1.25)

We see that the attractive scattering length aD/D̄ > 0 (repulsive scattering length aD/D̄ < 0) induces the decrease (increase)
of theD/D̄mass in nuclearmatter. In Tables 6 and 7, we show the results of the averaged scattering lengths (4.1.25).We note
that the scattering length in the I = 1 channel is important for the in-medium property of the D/D̄ meson, because of the
larger weight in Eq. (4.1.25). We however remind that Eq. (4.1.24) is a simple estimation, and more detailed analysis of the
mass shift will be discussed in Section 4.3. In Ref. [177], the two-body scattering length is evaluated by the QCD sum rules,
in order to study the in-medium modification of the D meson mass. The averaged scattering length of D and D̄ is estimated
as (aD + aD̄)/2 = 0.72 ± 0.12 fm. This suggests the decrease of the averaged mass of D and D̄ by about ' � 48M ± 8 MeV,
while the later studies indicate the increase of the D meson masses. Again, thorough discussion on the mass shift will be
given in Section 4.3.

4.2. Few-body systems

We have seen several studies with an attractive DN/D̄N interaction, some of which predict a (quasi-)bound state below
the threshold. These observations suggest the possible formation of a bound state of D/D̄ with a few nucleons. If it exists,

Tab. from A. Hosaka, et al, Prog.Part.Nucl.Phys. 96 (2017) 88-153

■ pD− momentum correlation from pp collision (ALICE)
S. Acharya et al. ALICE collab. Phys.Rev.D 106 (2022) 5, 052010

as previously mentioned, the systematic uncertainty on
Cexpðk"Þ is estimated by varying the proton and D−-
candidate selection criteria and ranges between 0.5% and
3% as a function of k". The uncertainties of the λi weights
are derived from the systematic uncertainties on the proton
and D− purities (Pp and PD−), fD"− , and fnonprompt reported
in Sec. III A. The systematic uncertainties of CpðKþπ−π−Þðk"Þ
are estimated following the same procedure adopted for
Cexpðk"Þ and, in addition, by varying the range of the fit of
the correlation function parametrized from the sidebands
regions of the invariant mass distribution. Additional
checks are performed by varying the invariant mass interval
used to define the sidebands region of up to 100 MeV=c2.
The resulting systematic uncertainty ranges from 1% to
5%. The systematic uncertainty of CpD"−ðk"Þ is due to the
uncertainty on the emitting source. Considering the small
λpD"−ðk"Þ this uncertainty results to be negligible compared
to the other sources of uncertainty. The overall relative
Systematic uncertainty on CpD−ðk"Þ resulting from the
different sources ranges between 3% and 10% and is
maximum in the lowest k" interval.

IV. RESULTS

The resulting genuine CpD−ðk"Þ correlation function can
be employed to study the pD− strong interaction that is
characterized by two isospin configurations and is coupled
to the nD̄0 channel. First of all, in order to assess the effect
of the strong interaction on the correlation function, a
reference calculation including only the Coulomb interac-
tion is considered. The corresponding correlation function is
obtained using CATS [71]. Second, various theoretical
approaches to describe the strong interaction are bench-
marked, including meson exchange (J. Haidenbauer et al.
[22]), meson exchange based on heavy quark symmetry
(Y. Yamaguchi et al. [25]), an SU(4) contact interaction
(J. Hoffmann and M. Lutz [23]), and a chiral quark model
(C. Fontoura et al. [24]). The relative wave functions for the
model of J. Haidenbauer et al. [22] are provided directly,
while for the other models [23–25] they are evaluated by
employing a Gaussian potential whose strength is adjusted
to describe the corresponding published I ¼ 0 and I ¼ 1
scattering lengths listed in Table I. The pD− correlation
function is computed within the Koonin-Pratt formalism,
taking into account explicitly the coupling between the pD−

and nD̄0 channels [73] and including the Coulomb inter-
action [74]. The finite experimental momentum resolution is
considered in the modeling of the correlation functions [39].
The outcome of these models is compared in Fig. 3 with

the measured genuine pD− correlation function. The degree
of consistency between data and models is quantified by the
p-value computed in the range k" < 200 MeV=c. It is
expressed by the number of standard deviations nσ reported
in Table I, where the nσ range accounts, at one standard
deviation level, for the total uncertainties of the data points
and the models. The values of the scattering lengths f0 for
the different models are also reported in Table I. Here, the
high-energy physics convention on the scattering-length
sign is adopted: a negative value corresponds to either a
repulsive interaction or to an attractive one with presence of
a bound state, while a positive value corresponds to an
attractive interaction. The data are compatible with the
Coulomb-only hypothesis within ð1.1–1.5Þ σ. Nevertheless,
the level of agreement slightly improves in case of the
models by J. Haidenbauer et al. (employing g2σ=4π ¼ 2.25)
which predicts an attractive interaction, and by Y.
Yamaguchi et al. which foresees the formation of a ND̄
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FIG. 3. Genuine pD− correlation function compared with
different theoretical models (see text for details). The null
hypothesis is represented by the curve corresponding to the
Coulomb interaction only.

TABLE I. Scattering parameters of the different theoretical models for the ND̄ interaction [22–25] and degree of
consistency with the experimental data computed in the range k" < 200 MeV=c.

Model f0ðI ¼ 0Þ f0ðI ¼ 1Þ nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [22] (g2σ=4π ¼ 2.25) 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [23] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [25] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [24] 0.16 −0.25 (1.1–1.5)

S. ACHARYA et al. PHYS. REV. D 106, 052010 (2022)

052010-6

Bound

Unbound (Virtual)
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HAL QCD Method

N. Ishii, S. Aoki, and T. Hatsuda PRL 99, 022001 (2007)

r

V (r)

E

δ(E)

⟨O(t)O(0)⟩ Potential Phase Shift

C(t, r⃗) = ∑
x⃗
⟨O1(t, x⃗ + r⃗)O2(t, x⃗)J̄ (0)⟩ = ∑

n
Anψ(⃗r; En)e−Ent

ψ(⃗r)→ sin(kr− lπ/2 + δ(k))
kr

eiδ(k) (r ≫ R)

(∇2 + k2)ψ(⃗r; En) =
∫

d⃗r′U(⃗r, r⃗′)ψ(⃗r′; En)

■ Time-dependent method Ishii et al. (HAL QCD), PLB712, 437(2012)[
1 + 3δ2

8µ

∂2

∂t2 −
∂

∂t
+
∇2

2µ

]
R(t, r⃗) =

∫
d⃗r′U(⃗r, r⃗′)R(t, r⃗′)
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Setup

Phys. Rev. D 110, 094502 (HAL QCD Collaboration)

■ Iwasaki gauge action (β = 1.82)

■ 2+1 flavor, O(a)-improved Wilson
quark action

■ V = 96× 963 (L = 8.1 fm)

a detailed analysis is beyond the scope of this paper, we
here present a simple analysis which is performed in the
same way as in the case of stable hadrons. Such an analysis
is expected to be a good approximation for hadrons with
small decay widths, but large systematic uncertainties are
introduced for hadrons with large decay widths.
The correlators are calculated with the point-sink and

wall-source operators as described in Sec. V B. The
effective mass plots are shown in Appendix C. The fit
results are summarized in Table VI. We note again that the
study considering decay modes is necessary in the future in
particular for hadrons with large decay widths.

VII. SCALE SETTING AND OBSERVABLES
IN PHYSICAL UNITS

The lattice cutoff scale is determined in this section. In
our study, we choose the mass of the Ω baryon, mΩ, for the
determination of the lattice cutoff scale. As was shown in
Sec. V B, mΩ is determined with the highest precision
among all the baryons considered and its systematic error is
thoroughly under control.
Using the experimental value of the Ω mass [62],

mΩ ¼ 1672.45 ½MeV#, we determine the lattice spacing as

a ¼ 0.084372ð54Þðþ109
−6 Þ ½fm#; ð51Þ

1

a
¼ 2338.8ð1.5Þðþ0.2

−3.0Þ ½MeV#: ð52Þ

We also confirm that the lattice scale determined from the Ξ
mass is consistent with that from the Ω mass. Our lattice
scale is slightly different from that obtained from PACS10
configurations [26], which employ essentially the same
gauge configuration setup, a−1PACS10 ¼ 2316.2ð4.4Þ½MeV#.
For in-depth comparison between two results, see
Appendix B.
Using our lattice cutoff scale, we can now give the

physical values for the renormalized quark masses and the
decay constants of PS mesons as

mMS
ud ð2 GeVÞ ¼ 3.225ðþ16

−19Þð46Þ ½MeV#;

mMS
s ð2 GeVÞ ¼ 88.37ðþ0.15

−0.22Þð1.26Þ ½MeV#; ð53Þ

fπ ¼ 133.3ðþ0.4
−0.5Þð1.6Þ ½MeV#;

fK ¼ 158.6ðþ0.3
−0.4Þð1.9Þ ½MeV#: ð54Þ

Here, the first errors denote the sum of the statistical and
systematic errors of each quantity in lattice units as well as
the statistical and systematic errors of the lattice unit
combined in quadrature, while the second errors in quark
masses and decay constants present the error of ðZA=ZPÞ
and ZA, respectively.
The masses of low-lying hadrons in physical units are

given in Table VII. The numbers in the first (second)

parentheses denote the statistical (systematic) errors. The
statistical correlations between each hadron and Ω baryon
wall-source correlators are properly taken into account
in the estimate of statistical errors. In Table VII, the
experimental values corresponding to the isospin-averaged
masses are also shown for comparison. In Fig. 16, we show
a summary plot for stable hadrons by red circles together
with experimental values shown by black lines. In this
paper, mΩ is used as an input for the scale setting, and
masses of all other hadrons, including mπ , mK , are outputs.
In Fig. 16, however, we indicate that mπ , mK also cor-
respond to inputs, since quark mass parameters κud; κs
used in this study were previously tuned using mπ , mK
in Ref. [25].
The lattice results of the masses of hadrons are found to

be sufficiently close to the experimental results considering

TABLE VII. Summary table for the masses of stable hadrons in
physical units. The first and second parentheses denote the
statistical and systematic errors, respectively. The experimental
values correspond to isospin-averaged ones taken from PDG [62].

Hadron Experiment [MeV] Lattice [MeV]

π 138.04 137.1ð0.3Þðþ0.0
−0.2 Þ

K 495.64 501.8ð0.3Þðþ0.0
−0.7 Þ

N 938.92 939.7ð1.8Þðþ0.2
−1.7 Þ

Λ 1115.68 1121.4ð3.6Þðþ0.5
−3.7 Þ

Σ 1193.15 1202.5ð5.6Þðþ0.3
−4.0 Þ

Ξ 1318.29 1320.7ð2.1Þðþ1.5
−1.7 Þ

Ω 1672.45 Input

FIG. 16. Summary of hadron spectrum at the physical point,
where mΩ is used as an input for the scale setting. mπ , mK are
outputs in this paper, but they were essentially used as inputs in
previous studies with the same lattice setting [25]. Red circles and
blue triangles denote the masses of stable hadrons and hadronic
resonances, respectively, with statistical and systematic errors
combined in quadrature. Horizontal black lines denote the
experimental values, and gray bands correspond to the decay
widths of resonances, where values are taken from PDG [62] with
isospin averaging.

TATSUMI AOYAMA et al. PHYS. REV. D 110, 094502 (2024)
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and ZA, respectively.
The masses of low-lying hadrons in physical units are

given in Table VII. The numbers in the first (second)

parentheses denote the statistical (systematic) errors. The
statistical correlations between each hadron and Ω baryon
wall-source correlators are properly taken into account
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paper, mΩ is used as an input for the scale setting, and
masses of all other hadrons, including mπ , mK , are outputs.
In Fig. 16, however, we indicate that mπ , mK also cor-
respond to inputs, since quark mass parameters κud; κs
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TABLE I: Mass of the D̄ meson and D̄ú meson from Set-I and Set-II in physical units

[MeV]. The fit range of the 2-point correlation functions are t/a œ [23, 32] for D̄, and

t/a œ [20, 25] for D̄ú. The values in parentheses are the statistical uncertainties. The PDG

values [18] are labeled as the experimental values.

Meson Set-I [MeV] Set-II [MeV] Experiment [MeV]

D̄ 1880.2 (1) 1854.3 (1) 1864.84 ± 0.05

D̄ú 2017.8 (2) 1994.1 (2) 2006.85 ± 0.05

We use 360 gauge configurations for statistics, sampled at intervals of five trajectories.

The correlation functions are averaged over both forward and backward propagation

directions for each configuration. In addition, 96 ◊ 4 measurements are performed by

shifting the source operator in the temporal direction and applying four rotations of the

hypercube to enhance statistical precision.

Statistical uncertainties are estimated by using the jackknife sampling method. Bin size

dependence was evaluated for cases with bin sizes of 20, 24, 30, and 40 configurations,

and it has been confirmed to be negligible. In this paper, we present the results where the

bin size is fixed to 30 configurations.

IV. RESULTS

The leading-order potential VLO(r) obtained by Eq. 6, is shown in Fig. 1 for three con-

secutive time slices t/a = 13–15. This window of time slices is chosen where contributions

from excited states are suppressed while avoiding the exponentially growing statistical

errors that occur at larger times. In Appendix ??, we show the time dependence over a

broader range of t/a. As we can observe from Fig. 1, VLO(r) shows small time dependence

within this window, indicating that contributions from excited states are negligible in

comparison to the statistical fluctuations.

We see that VLO(r) has a repulsive core in the short-distance region and an attractive

pocket in the intermediate- to long-distance region for both the I = 0 and I = 1 channels.

For the I = 0 channel, VLO(r) has a repulsive core in the short-distance region up to

around 0.5 fm and an attractive pocket between 0.5 fm to 2.0 fm. The attractive pocket has

7

■ Relativistic heavy-quark action (RHQ)

□ set-I: slightly heavy c quark
□ set-II: slightly light c quark

■ Wall source; Sink operators:

D̄i(x) = c̄(x)iγ5qi(x), Nα,i(x) = εabc

[
ua(x)TCγ5db(x)

]
qc

α,i(x)

■ 360 configs × 96 source pos × 4 rotations × 2 directions of propagation

■ A+
1 projection + Misner method (T. Miyamoto et al., Phys. Rev. D 101, 074514

(2020)) Suppresses l = 4, 6, . . . (e.g., Laplacian-induced contamination)
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LO HAL Potential

Leading-order of the derivative expansion:

U(⃗r, r⃗′) = VLO(r)δ3 (⃗r− r⃗′) +O(∇n)

LO potential (set-I):
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■ t-dependence controlled within statistical fluctuations

■ Repulsive core + Weak attractive pocket (stronger for I = 0)

I = 0 I = 1
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LO HAL Potential: mc dependence

VLO(r): set-I vs set-II

Vset-I/Vset-II(I = 0) = 1.0115(9) Vset-I/Vset-II(I = 1) = 1.010(3)

■ Heavier the D meson mass, the more attractive cf. mset-I
D /mset-II

D =1.014

■ Linear interpolation to physical D0 mass
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Fitting

■ Fit A: purely phenomenological fit

V4G
fit (r) =

4

∑
i−=1

ai exp(−b2
i r2)

■ Fit B: TPE-motivated fit (OPE forbidden by parity conservation)
J.Tarru Castellá and G.a.Krein, Phys.Rev.D 98 (2018) 1, 014029

V3G+TPE
fit (r) =

3

∑
i−=1

ai exp(−b2
i r2) + aTPE(1− exp(−Λ2r2))2 e−2mπr

r2

D̄

D̄

N

N

ππ

D̄

D̄

N

N

π

D̄∗
π
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Fitting: Example t/a = 14
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s-wave Phase Shift (Fit A)

■ t-dependence controlled within statistical fluctuations

■ I = 0 weak attraction, I = 1 weak repulsion

■ No bound state (or virtual state) in both channels
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Scattering Length

k cot δ0 =
1
a0

+
1
2

r0k2 +O(k4)

■ Fit A
aI=0

0 = 0.246± 0.105(+0.037
−0.051) fm aI=1

0 = −0.085± 0.050(+0.014
−0.002) fm

■ Fit B
aI=0

0 = 0.321± 0.116(+0.026
−0.040) fm aI=1

0 = −0.052± 0.071(+0.013
−0.001) fm
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0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Mass shift of D̄ with Linear Density Approximation

■ Linear Density Approximation

∆mD̄ = −2π
mN + mD̄

mNmD̄
ρN ā0, ā0 =

1
4

a(I=0)
0 +

3
4

a(I=1)
0

Input HAL scattering amplitude:

∆m(4G)
D̄ ∼ +0.14 MeV ∆m(3G+TPE)

D̄ ∼ −2.7 MeV

5. Discussions
- Charm (bottom) nuclei?
✔ Can charm (bottom) nuclei exist as stable states?
✔What about () mesons in nuclear medium? 

- Binding energies?

Cf. Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017)CC10583 PRC July 4, 2017 13:24

SPECTRAL FUNCTIONS FOR D̄ AND D̄∗
0 . . . PHYSICAL REVIEW C 00, 005200 (2017)

TABLE I. List of the mass shifts of the D̄ meson in nuclear medium in previous works: quark meson coupling (QMC) model, QCD sum
rule, coupled channel analysis, and chiral effective model.

Analysis Ref. Mass shift of D̄ (MeV) Density ρ (fm−3)

QMC model [18] −62 0.15

QCD sum rule [19] −48 ± 8 0.17
[23] +45 (averaged mass shift of D and D̄) 0.15
[28] −46 ± 7 (averaged mass shift of D and D̄) 0.17
[30] −72 (averaged mass shift of D and D̄) 0.17
[31] +38 0.17

Coupled channel analysis [21] +18 0.17
[22] +(11–20) 0.16
[26] +35 0.17
[15] ≃ −(20–27) 0.17

Chiral effective model [20] ≃ −(30–180) 0.15
[25] −27.2 0.15
[16] −35.1 0.17
[37] +97 (parity doublet model), +120 (skyrmion crystal) 0.16

Our result +74 0.095

right is the Landau damping, which is the nuclear matter effect,631

and this peak grows as the density increases.632

Here, we compare our results and ones obtained in previous633

works. The resultant mass shifts of the D̄ meson are listed in634

Table. I. As we can see in this table, Refs. [23] and [31]635

provide increases of mass of the D̄ meson at density, as is636

the case with our result. These similar tendencies are obtained637

because a contribution of the mean field of the σ meson (σ ∗
0 )638

or chiral condensate (⟨q̄q⟩) is included, and the D̄ meson mass639

is affected by the decrease of σ0 (or ⟨q̄q⟩) at density as the640

chiral symmetry is restoring.641

Parameter dependence of our results is also studied. In642

obtaining Figs. 14 and 15, we have employed the value of643

cutoff # = 300 MeV, which is slightly higher than the scale644

of Fermi momentum. Cutoff dependence is also studied. When645

we choose # = 450 MeV, the resulting masses of D̄ and646

D̄∗
0 mesons are changed by 10 MeV at most. The cutoff647

dependence of our results is small. Furthermore, we also study648

the sigma term dependence of our results. When we take $πN649

to be 60 MeV [42], we find that the masses of D̄ mesons650

change by a few MeV.651

There are several problems which are not covered in the652

present study. We do not take into account the effects of the653

mean field of the ω meson in this study. This effect can let654

the mass of D̄ and D̄∗
0 increase by a hundred MeV at most655

at normal nuclear matter density, as studied in Ref. [37].656

The mass modifications to D̄ and D̄∗
0 mesons from the ω657

contribution are the same, however, so that mass difference658

between D̄∗
0 and D̄ mesons is not changed. Besides, we do not659

include any charmed baryons such as #̄cN loops. These loop660

corrections can be estimated as ∼ g2
#cDN

2mN m#̄c
ρB , where g#DN is661

the #̄cD̄N coupling. This correction can provide a few tens of662

MeV if g#cDN is estimated as g#cDN = 10, which is a natural663

choice of value of a hadron interaction. We need to include664

these corrections collectively, and we leave this work for a665

future publication.666

In obtaining the spectral function in Fig. 11, we have treated 667

the σ meson as a stable state, while the observed σ meson has 668

a width corresponding to the decay process of σ → ππ . When 669

we include this effect, we expect that the first peak found in 670

Fig. 11 gets slightly broadened. 671

We construct nuclear matter by the linear sigma model 672

in this study. As is known well, such matter leads to the 673

phase transition of chiral symmetry at lower than the normal 674

nuclear matter density [38]. The main purpose of the present 675

study is to investigate the qualitative tendency of changes of 676

masses and spectral functions for D̄ and D̄∗
0 mesons at low 677

density. We have used a formalism which fully respects the 678

chiral symmetry. The essential contribution to the spectral 679

function for the D̄∗
0 meson is the D̄π loop, and the linear sigma 680

model is one of the simplest chiral models which can provide 681

such interactions. Therefore, we have employed this model to 682

describe the nuclear matter at low density. In order to study the 683

changes of D̄ and D̄∗
0 mesons around the normal nuclear matter 684

density quantitatively, we should apply the present method to 685

more complex but realistic matter, such as that obtained in 686

Ref. [43]. 687

In the present analysis, we only consider the spectral 688

function for D̄ and D̄∗
0 mesons with q⃗ = 0⃗ for simplicity. In the 689

experiment, however, it is expected to be difficult to measure 690

the spectral functions in such a particular kinematic region. 691

Therefore we need to see them with nonzero momentum. We 8692

leave this work for a future publication. 693
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Possible open question: can we study (anti-)charm nuclei 
through !'( interaction? 

Flavor nuclei: 
Diversity of matter
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$

*

（QMC: quark-meson coupling）
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Finite Volume Energy and Effective Mass
■ LO HAL QCD potential in FV

Hψn (⃗r) = ELO
n ψn (⃗r), H = −∇2/2µ + V4G

LO (r)

■ Effective mass:

Eeff
0 (t) =

1
a

log

[
R(opt)(t)

R(opt)(t + 1)

]
R(t) = ∑

x⃗
R(x⃗, t), Ropt

0 (t) = ∑
x⃗

ψ†
0(x⃗)R(x⃗, t)

9 10 11 12 13 14 15 16 17
t/a

2

1

0

1

2

E 
[M
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]

DN (I = 0)

E LO
0

E eff
0 : with projection

E eff
0 : no projection

9 10 11 12 13 14 15 16 17
t/a

2

1

0

1

2

E 
[M

eV
]

DN (I = 1)

E LO
0

E eff
0 : with projection

E eff
0 : no projection

■ Energy level of LO HAL QCD potential (4G) lies well within statistical error
■ GS projection on the R-correlator does not change result
→ Strong ground-state overlap in the R-correlator
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Summary

■ D̄N system: relevance for pentaquark states, charmed nuclei, . . .

■ Very limited experimental input⇒ lattice QCD is essential

■ This work: LO analysis in derivative expansion using fitted potential

□ Attractive interaction in I = 0, repulsive in I = 1
□ No bound states observed in either I = 0 or I = 1 channels
□ Systematic uncertainties estimated via 4G vs. 3G+TPE fits
→ relatively small compared to model dependence

□ FV energy levels consistent with R-correlator effective masses
→ LO truncation effects are under control

■ Coupled-channel analysis of D̄N–D̄∗N system
→ essential for explaining the attraction

■ Study of multi-body systems (D̄NN, D̄A) via HAL QCD potential

■ Possible Coulomb-assisted bound states?

■ Extension to BN–B∗N system
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