DN Scattering at Physical Point by the HAL QCD Method

Wren Yamada

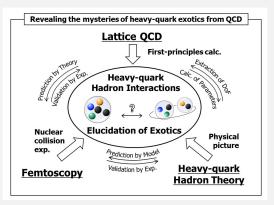
RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (RIKEN iTHEMS)

Collaboration with: Yan Lyu, Kotaro Murakami, Takumi Doi (and other HAL QCD members)

MULTI-PARTICLE 25

July 31, 2025

Zooming out a little bit...



T. Doi-san's KIBAN(S) abstract https://www.jsps.go.jp/.../23h05439.pdf

HAL QCD works:

- $J/\psi N$ - $\eta_c N$ ($m_\pi = 146$ MeV) Yan Lyu et al, Phys.Lett.B 860 (2025) 139178
- $\Omega_{ccc}N$, Λ_cN ($m_\pi=137$ MeV) L. Zhang et al
- $\bar{D}N$ ($m_{\pi} = 137$ MeV) WY et al, In prep. \leftarrow This work

Wren Yamada DN Scattering at Physical Point 2 / 15

$\bar{D}N$ System: Motivation and Features

- $\bar{D} = \bar{c}q$ and N = qqq: no $q\bar{q}$ annihilation channel \Rightarrow Stable two-body system; possible exotic configurations (e.g., pentaquark?) cf. T_{cc} , P_c
- Heavy Quark Spin Symmetry (HQSS): relatively small mass gap between \bar{D} and \bar{D}^* meson
 - \Rightarrow Contrast with KN system (e.g., Θ^+)
- In-medium properties of (anti-)*D* mesons:
 - ☐ Mass modifications in nuclear matter
 - Possible bound states (and excited states) with nuclei (extension of kaonic nuclei, HQSS doublets)
 - □ QCD Kondo effect in charm sector?
- Toward heavy-flavor analogues: extension to *BN* interactions
- Scarce experimental data, strong model dependence

Current status: Models and Experiment

■ SU(4) WT contact

J.Hofmann, M.F.M.Lutz, Nucl.Phys. A763 (2005) 90-139, D.Gamermann, et al, Phys.Rev. D81 (2010) 094016

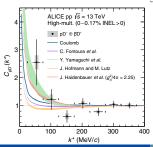
Meson exchange models (+short range OGE)

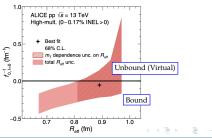
Y. Yamaguchi, et al, Phys.Rev. D 84 (2011) 014032, J.Haidenbauer, et al, Eur.Phys.J. A33 (2007) 107-117C.E. Fontoura, et al, Phys.Rev. C 87 (2) (2013) 025206, Y. Yamaguchi, et al, Phys.Rev. D 106, 094001 (2022)

Model	$a_{\bar{D}N}^{I=0}$	$a_{\bar{D}N}^{l=1}$	$a_{\bar{D}}$
SU(4) contact [185]	-0.16	-0.26	-0.24
Meson exchange [194]	0.07	-0.45	-0.32
Pion exchange [192]	-4.38	-0.07	-1.15
Chiral quark model [219]	0.03-0.16	0.20-0.25	0.16-0.23

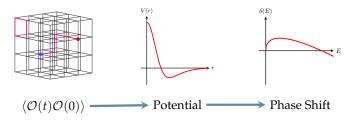
Tab. from A. Hosaka, et al, Prog.Part.Nucl.Phys. 96 (2017) 88-153

- pD^- momentum correlation from pp collision (ALICE)
 - S. Acharya et al. ALICE collab. Phys.Rev.D 106 (2022) 5, 052010





N. Ishii, S. Aoki, and T. Hatsuda PRL 99, 022001 (2007)



$$\begin{split} \mathcal{C}(t,\vec{r}) &= \sum_{\vec{x}} \langle \mathcal{O}_1(t,\vec{x}+\vec{r})\mathcal{O}_2(t,\vec{x})\bar{\mathcal{J}}(0) \rangle = \sum_n A_n \psi(\vec{r};E_n) e^{-E_n t} \\ \psi(\vec{r}) &\to \frac{\sin(kr - l\pi/2 + \delta(k))}{kr} e^{i\delta(k)} \quad (r \gg R) \\ (\nabla^2 + k^2) \psi(\vec{r};E_n) &= \int d\vec{r}' U(\vec{r},\vec{r}') \psi(\vec{r}';E_n) \end{split}$$

■ Time-dependent method Ishii et al. (HAL QCD), PLB712, 437(2012)

$$\left[\frac{1+3\delta^2}{8\mu}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{2\mu}\right]R(t,\vec{r}) = \int d\vec{r}' U(\vec{r},\vec{r}')R(t,\vec{r}')$$

Setup

Phys. Rev. D 110, 094502 (HAL QCD Collaboration)

- Iwasaki gauge action ($\beta = 1.82$)
- 2+1 flavor, $\mathcal{O}(a)$ -improved Wilson quark action
- $V = 96 \times 96^3 (L = 8.1 \text{ fm})$

$$a = 0.084372(54)\binom{+109}{-6}$$
 [fm],

Relativistic heavy-quark	action	(RHQ)
--	--------	-------

- □ set-I: slightly heavy *c* quark□ set-II: slightly light *c* quark
- Wall source; Sink operators:

Hadron	Experiment [MeV]	Lattice [MeV]
π	138.04	$137.1(0.3)(^{+0.0}_{-0.2})$
K	495.64	$501.8(0.3)(^{+0.0}_{-0.7})$
N	938.92	939.7(1.8)(+0.2)
Λ	1115.68	$1121.4(3.6)(^{+0.5}_{-3.7}$
Σ	1193.15	$1202.5(5.6)(^{+0.3}_{-4.0}$
Ξ	1318.29	$1320.7(2.1)(^{+1.5}_{-1.7}$
Ω	1672.45	Input

Meson	Set-I [MeV]	Set-II [MeV]	Experiment [MeV]
\bar{D}	1880.2 (1)	1854.3 (1)	1864.84 ± 0.05
\bar{D}^*	2017.8 (2)	1994.1 (2)	2006.85 ± 0.05

$$\bar{D}_i(x) = \bar{c}(x)i\gamma_5q_i(x), \quad N_{\alpha,i}(x) = \varepsilon_{abc} \left[u^a(x)^T C\gamma_5 d^b(x) \right] q_{\alpha,i}^c(x)$$

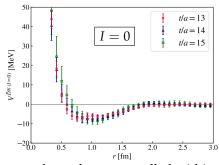
- 360 configs × 96 source pos × 4 rotations × 2 directions of propagation
- A_1^+ projection + Misner method (T. Miyamoto et al., Phys. Rev. D 101, 074514 (2020)) Suppresses $l=4,6,\ldots$ (e.g., Laplacian-induced contamination)

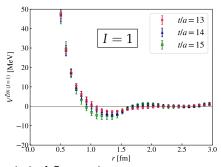
LO HAL Potential

Leading-order of the derivative expansion:

$$U(\vec{r}, \vec{r}') = \underline{V_{\text{LO}}(r)} \delta^3(\vec{r} - \vec{r}') + \mathcal{O}(\nabla^n)$$

LO potential (set-I):



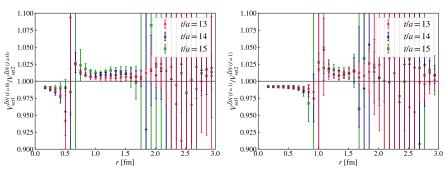


- t-dependence controlled within statistical fluctuations
- Repulsive core + Weak attractive pocket (stronger for I = 0)

4 D > 4 D > 4 E > 4 E > E 990

LO HAL Potential: m_c dependence

$V_{LO}(r)$: set-I vs set-II



$$V_{\text{set-II}}/V_{\text{set-II}}(I=0) = 1.0115(9)$$
 $V_{\text{set-II}}/V_{\text{set-II}}(I=1) = 1.010(3)$

- Heavier the D meson mass, the more attractive cf. $m_D^{\text{set-II}}/m_D^{\text{set-II}}$ =1.014
- Linear interpolation to physical D_0 mass

4 D L 4 D L 4 E L 4 E L 4 D D D

Fitting

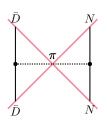
■ Fit A: purely phenomenological fit

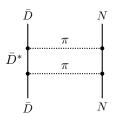
$$V_{\text{fit}}^{4G}(r) = \sum_{i=-1}^{4} a_i \exp(-b_i^2 r^2)$$

Fit B: TPE-motivated fit (OPE forbidden by parity conservation)

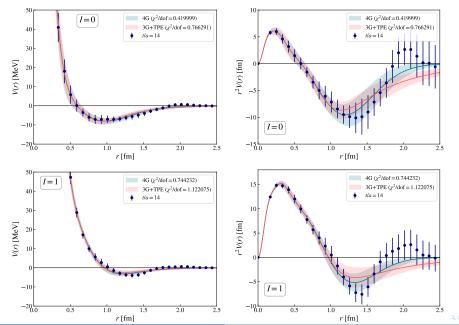
J.Tarru Castellá and G.a.Krein, Phys.Rev.D 98 (2018) 1, 014029

$$V_{\rm fit}^{\rm 3G+TPE}(r) = \sum_{i=-1}^3 a_i \exp(-b_i^2 r^2) + a^{\rm TPE} (1 - \exp(-\Lambda^2 r^2))^2 \frac{e^{-2m_\pi r}}{r^2}$$

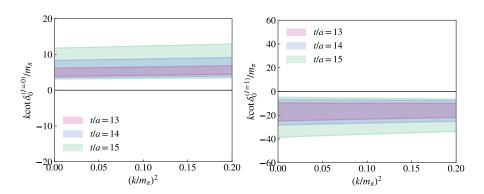




Fitting: Example t/a = 14



s-wave Phase Shift (Fit A)



- *t*-dependence controlled within statistical fluctuations
- I = 0 weak attraction, I = 1 weak repulsion
- No bound state (or virtual state) in both channels

Scattering Length

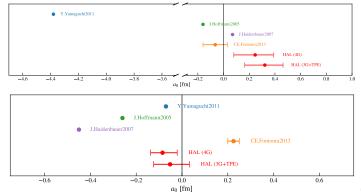
$$k \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2}r_0k^2 + \mathcal{O}(k^4)$$

Fit A

$$a_0^{I=0} = 0.246 \pm 0.105 (^{+0.037}_{-0.051}) \; \mathrm{fm} \quad a_0^{I=1} = -0.085 \pm 0.050 (^{+0.014}_{-0.002}) \; \mathrm{fm}$$

■ Fit B

$$a_0^{I=0} = 0.321 \pm 0.116 (^{+0.026}_{-0.040}) \; \mathrm{fm} \quad a_0^{I=1} = -0.052 \pm 0.071 (^{+0.013}_{-0.001}) \; \mathrm{fm}$$



Wren Yamada DN Scattering at Physical Point 12

Mass shift of \bar{D} with Linear Density Approximation

Linear Density Approximation

$$\Delta m_{\bar{D}} = -2\pi \frac{m_N + m_{\bar{D}}}{m_N m_{\bar{D}}} \rho_N \bar{a}_0, \quad \bar{a}_0 = \frac{1}{4} a_0^{(I=0)} + \frac{3}{4} a_0^{(I=1)}$$

Input HAL scattering amplitude:

$$\Delta m_{ar{D}}^{(4G)} \sim +0.14 \text{ MeV} \quad \Delta m_{ar{D}}^{(3G+TPE)} \sim -2.7 \text{ MeV}$$

Analysis	Ref.	Mass shift of \bar{D} (MeV)	Density ρ (fm ⁻³)
QMC model (QMC: quark-meson	coupling)[18]	-62 attractive	0.15
QCD sum rule	[19]	-48 ± 8 attractive	0.17
	[23]	$+45$ (averaged mass shift of D and \bar{D}) repulsive	0.15
	[28]	-46 ± 7 (averaged mass shift of D and \bar{D}) attractive	0.17
	[30]	-72 (averaged mass shift of D and \bar{D}) attractive	0.17
	[31]	+38 repulsive	0.17
Coupled channel analysis	[21]	+18 repulsive	0.17
	[22]	+(11-20) repulsive	0.16
	[26]	+35 repulsive	0.17
	[15]	$\simeq -(20-27)$ attractive	0.17
Chiral effective model	[20]	$\simeq -(30-180)$ attractive	0.15
	[25]	-27.2 attractive	0.15
	[16]	-35.1 attractive	0.17
	[37]	+97 (parity doublet model), +120 (skyrmion crystal) repulsiv	e 0.16
	Our result*	+74 repulsive	0.095

^{*}D. Suenaga, S. Yasui., M. Harada, Phys. Rev. C96, 015204 (2017) [See this paper for the reference numbers.]

Yasui-san's slide 🕻 🤈

Finite Volume Energy and Effective Mass

LO HAL QCD potential in FV

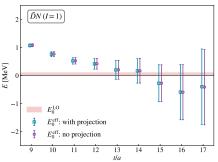
$$H\psi_n(\vec{r}) = E_n^{LO}\psi_n(\vec{r}), \qquad H = -\nabla^2/2\mu + V_{LO}^{4G}(r)$$

Effective mass:

$$E_0^{\text{eff}}(t) = \frac{1}{a} \log \left[\frac{R^{(\text{opt})}(t)}{R^{(\text{opt})}(t+1)} \right]$$

$$R(t) = \sum_{\vec{x}} R(\vec{x}, t), \qquad R_0^{\text{opt}}(t) = \sum_{\vec{x}} \psi_0^{\dagger}(\vec{x}) R(\vec{x}, t)$$





- Energy level of LO HAL QCD potential (4G) lies well within statistical error
- GS projection on the R-correlator does not change result
 → Strong ground-state overlap in the R-correlator

Summary

- \blacksquare $\bar{D}N$ system: relevance for pentaquark states, charmed nuclei, ...
- Very limited experimental input ⇒ lattice QCD is essential
- This work: LO analysis in derivative expansion using fitted potential
 - \square Attractive interaction in I = 0, repulsive in I = 1
 - $\ \square$ No bound states observed in either I=0 or I=1 channels
 - □ Systematic uncertainties estimated via 4G vs. 3G+TPE fits
 → relatively small compared to model dependence
 - ☐ FV energy levels consistent with R-correlator effective masses
 - → LO truncation effects are under control
- Coupled-channel analysis of $\bar{D}N$ – \bar{D}^*N system \rightarrow essential for explaining the attraction
- Study of multi-body systems ($\bar{D}NN$, $\bar{D}A$) via HAL QCD potential
- Possible Coulomb-assisted bound states?
- Extension to $BN-B^*N$ system

