Who is Steve Sharpe to me?

Jorge Baeza-Ballesteros

SteveFest - 1st August 2025

Who is Steve Sharpe to me?

and How can EFTs complement lattice computations?

Jorge Baeza-Ballesteros

SteveFest - 1st August 2025

Who is Steve Sharpe to me?

and How can EFTs complement lattice computations?

Jorge Baeza-Ballesteros

SteveFest - 1st August 2025

Congratulations Steve!

Overview

■ Three-pion K matrix at NLO in ChPT

2 Nucleon-nucleon interactions with plane-wave QC

3 Who is Steve Sharpe to me?

Overview

1 Three-pion K matrix at NLO in ChPT

2 Nucleon-nucleon interactions with plane-wave QC

Who is Steve Sharpe to me?

Once upon a time...

Steve has a **special relation** with three-particle systems

Once upon a time...

Steve has a special relation with three-particle systems

I first met Steve during Fernando's thesis defense:

$$\pi^+\pi^+\pi^+$$
 K-matrix from lattice QCD

[Blanton et al. 2020, 2021]

$$\begin{split} \mathcal{K}_{df,3}^{LO} &= \mathcal{K}_0 + \Delta \mathcal{K}_1 \\ \Delta &= \frac{P^2 - 9 M_\pi^2}{9 M_\pi^2} \end{split}$$

Jorge Baeza-Ballesteros

SteveFest - 1st August 2025

Once upon a time...

Steve has a special relation with three-particle systems

I first met Steve during Fernando's thesis defense:

$$\pi^+\pi^+\pi^+$$
 K-matrix
from lattice QCD
[Blanton et al. 2020, 2021]

1.5 \mathcal{K}_0 1.0 \mathcal{K}_1 0.5 \mathcal{K}_1 0.5 \mathcal{K}_1 0.5 \mathcal{K}_1 0.7 \mathcal{K}_1 0.7 \mathcal{K}_2 0.7 \mathcal{K}_3 0.7 \mathcal{K}_4 0.7 \mathcal{K}_5 0.8 \mathcal{K}_7 0.9 \mathcal{K}_7 0.9

$$\mathcal{K}_{\mathsf{df,3}}^{\mathsf{LO}} = \mathcal{K}_0 + \Delta \mathcal{K}_1$$

$$\Delta = \frac{P^2 - 9M_\pi^2}{9M_\pi^2}$$

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 4 / 28

$\pi^+\pi^+\pi^+$ from lattice QCD

Large tension between LO ChPT and lattice for $\pi^+\pi^+\pi^+$ [Blanton et al. 2020, 2021]

Need to understand the origin of this discrepancy to build confidence in the formalism

$\pi^+\pi^+\pi^+$ from lattice QCD

Large tension between LO ChPT and lattice for $\pi^+\pi^+\pi^+$ [Blanton et al. 2020, 2021]

Origin
of discrepancy

Problems with the quantization condition

Large higher-order corrections

Need to understand the origin of this discrepancy to build confidence in the formalism

Invitation: Determine three-pion K-matrix at NLO ChPT

Starting point: Three-pion amplitude at NLO in SU(2) ChPT [Bijnens and Husek 2021]

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 5 / 28

My visit to U. of Washington

Visit to the University of Washington in fall 2022 (Fernando came too!)

Wonderful hospitality by Steve

My visit to U. of Washington

Visit to the University of Washington in fall 2022 (Fernando came too!)

Wonderful hospitality by Steve

- ➤ Came to office every day in early post-covid times.
- Invitation to dinner at his place.
- ➤ Got special coffee for our stay
- ➤ Brought me as a guest to special event at U. Washington

Extremely grateful for his effort to make me feel comfortable both in and out the university!

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 6 / 28

An amazing team

U. Washington team:

Stephen Sharpe U. of Washington

U. of Bern

Fernando Romero-López Jorge Baeza-Ballesteros DESY

Lund U. team (The Swedes):

Hans Bijnens Lund U.

Tomáŝ Husek Charles U.

Mattias Sjö CPT Marseille

Bull's head subtraction

Steve's and Max's naming

Jorge Baeza-Ballesteros

SteveFest - 1st August 2025

Bull's head subtraction

Steve's and Max's naming

Steve, Fernando and myself first focused on the OPE contribution

Steve, Fernando and myself first focused on the OPE contribution

➤ Working with Steve is fast paced

Steve, Fernando and myself first focused on the OPE contribution

➤ Working with Steve is very fast paced

Steve, Fernando and myself first focused on the OPE contribution

➤ Working with Steve is **VERY fast paced**

Steve, Fernando and myself first focused on the OPE contribution

➤ Working with Steve is **VERY fast paced** → Steve is **passionate** about his job

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 9 / 28

Steve, Fernando and myself first focused on the OPE contribution

➤ Working with Steve is **VERY fast paced** → Steve is **passionate** about his job

➤ We all arrived to the same result!

Steve, Fernando and myself first focused on the OPE contribution

- ➤ Working with Steve is **VERY fast paced** → Steve is **passionate** about his job
- ➤ We all arrived to the same result! → Incorrect

"This [a factor of 81] is possibly the largest factor I have missed in my career" S. Sharpe

Determined $\mathcal{K}_{df,3}$ about threshold up to **quadratic order** [JBB et al. 2023]

$$\textit{M}_{\pi}^{2}\mathcal{K}_{df,3} = \mathcal{K}_{0} + \mathcal{K}_{1}\Delta + \mathcal{K}_{2}\Delta^{2} + \mathcal{K}_{A}\Delta_{A} + \mathcal{K}_{B}\Delta_{B} + \mathcal{O}(\Delta^{3})$$
 Angular dependence

Determined $\mathcal{K}_{df,3}$ about threshold up to quadratic order [JBB et al. 2023]

$$M_{\pi}^2 \mathcal{K}_{\mathsf{df},3} = \underbrace{\mathcal{K}_0}_{} + \underbrace{\mathcal{K}_1 \Delta}_{} + \underbrace{\mathcal{K}_2 \Delta^2}_{} + \underbrace{\mathcal{K}_A \Delta_A}_{} + \underbrace{\mathcal{K}_B \Delta_B}_{} + \mathcal{O}(\Delta^3)$$
 Angular dependence

Phenomenological LECs

Much better agreement to lattice results

New features: triangle diagrams, cutoff, angular dependence...

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 10 / 28

Determined $\mathcal{K}_{df,3}$ about threshold up to quadratic order [JBB et al. 2023]

$$\textit{M}_{\pi}^{2}\mathcal{K}_{df,3} = \mathcal{K}_{0} + \mathcal{K}_{1}\Delta + \mathcal{K}_{2}\Delta^{2} + \mathcal{K}_{A}\Delta_{A} + \mathcal{K}_{B}\Delta_{B} + \mathcal{O}(\Delta^{3})$$
 Angular dependence

Follow-up: K-matrix for general isospin

Follow-up [JBB et al. 2024]: LO and NLO computation in all isospin channels

Insight on chiral expansion for three-pion quantities

Useful for comparison to **future lattice results**

Follow-up: K-matrix for general isospin

Follow-up: K-matrix for general isospin

Large NLO correction across all isospin channels

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 11 / 28

The moral of this story

Getting to work with Steve was an invaluable experience:

- ➤ Very **supportive**, both academically and extra-academically.
- Keen on teaching and also learning new topics.

...and also some physics:

- \blacktriangleright NLO corrections to $\mathcal{K}_{df,3}$ are, in general, large.
- NLO corrections lead to reasonable agreement with lattice results, building confidence on the RFT formalism.

Overview

■ Three-pion K matrix at NLO in ChPT

2 Nucleon-nucleon interactions with plane-wave QC

Who is Steve Sharpe to me?

Lüscher's formalism breaks close to a left-hand cut

- ➤ Large exponentially-suppressed effects close to the lhc.
- ➤ Limits convergence of ERE and partial-wave truncation

Lüscher's formalism breaks close to a left-hand cut

- ➤ Large exponentially-suppressed effects close to the lhc.
- ➤ Limits convergence of ERE and partial-wave truncation

Lüscher's formalism breaks close to a left-hand cut

- ➤ Large exponentially-suppressed effects close to the lhc.
- ➤ Limits convergence of ERE and partial-wave truncation

Multiple **alternatives and extensions** proposed in recent years [Meng and Epelbaum 2021, Baião Raposo and Hansen 2024, **Steve** et al. 2024, Bubna et al. 2024, Dawid et al. 2025, ...]

Lüscher's formalism breaks close to a left-hand cut

- ➤ Large exponentially-suppressed effects close to the lhc.
- ➤ Limits convergence of ERE and partial-wave truncation

Multiple alternatives and extensions proposed in recent years [Meng and Epelbaum 2021, Baião Raposo and Hansen 2024, Steve et al. 2024, Bubna et al. 2024, Dawid et al. 2025, ...]

Leave something for the youngsters!

Lüscher's formalism breaks close to a left-hand cut

- ➤ Large exponentially-suppressed effects close to the lhc.
- Limits convergence of ERE and partial-wave truncation

Multiple alternatives and extensions proposed in recent years [Meng and Epelbaum 2021, Baião Raposo and Hansen 2024, Steve et al. 2024, Bubna et al. 2024, Dawid et al. 2025, ...]

Leave something for the youngsters!

Plane-wave QC uses knowledge from effective field theory

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 14 / 28

Plane-wave quantization condition

Plane-wave QC for NN: Lippmann-Schwinger in finite volume in plane-wave basis

Plane-wave quantization condition

Plane-wave QC for NN: Lippmann-Schwinger in finite volume in plane-wave basis

Pros:

- > Avoids partial-wave projection by working on the plane-wave basis.
- Includes knowledge from EFT: Ihc and less parameters
- > Numerically simple: FV energies are solutions to eigenvalue problem

Cons:

➤ Need to regularize potential!

e.g.
$$V(\mathbf{p}',\mathbf{p}) \longrightarrow V(\mathbf{p}',\mathbf{p}) \times \exp\left[-\frac{\mathbf{p}^2 + \mathbf{p}'^2}{\Lambda^2}\right]$$

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 15 / 28

Application: *NN* data at $M_\pi \sim$ 420 MeV and various *a* [Green et al. 2021] (In collaboration with J. Green)

LO potential:
$$V(\mathbf{p}', \mathbf{p}) = \frac{C_{\text{OPE}}}{4M_N^2} \frac{\mathbf{q}^2}{\mathbf{q}^2 + M_{\pi}^2} + C_{\text{cont}}$$

Jorge Baeza-Ballesteros

Application: *NN* data at $M_\pi \sim$ 420 MeV and various *a* [Green et al. 2021] (In collaboration with J. Green)

LO potential:
$$V(\mathbf{p}', \mathbf{p}) = \frac{C_{\text{OPE}}}{4M_N^2} \frac{\mathbf{q}^2}{\mathbf{q}^2 + M_{\pi}^2} + C_{\text{cont}}$$

Jorge Baeza-Ballesteros

SteveFest - 1st August 2025

Application: *NN* data at $M_\pi \sim$ 420 MeV and various *a* [Green et al. 2021] (In collaboration with J. Green)

LO potential:
$$V(\mathbf{p}', \mathbf{p}) = \frac{C_{\text{OPE}}}{4M_N^2} \frac{\mathbf{q}^2}{\mathbf{q}^2 + M_{\pi}^2} + C_{\text{cont}}$$

Jorge Baeza-Ballesteros

Application: *NN* data at $M_\pi \sim$ 420 MeV and various *a* [Green et al. 2021] (In collaboration with J. Green)

LO potential:
$$V(p',p) = \frac{C_{\text{OPE}}^{(0)} + a^2 C_{\text{OPE}}^{(1)}}{4M_N^2} \frac{q^2}{q^2 + M_\pi^2} + C_{\text{cont}}^{(0)} + a^2 C_{\text{cont}}^{(1)}$$

- ▶ Physical observables are independent of Λ, $C_{OPE} \propto g_{NNπ}^2$.
- ➤ Contact terms reabsorb UV effects

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 16 / 28

Overview

■ Three-pion K matrix at NLO in ChPT

2 Nucleon-nucleon interactions with plane-wave QC

Who is Steve Sharpe to me?

Some physics conclusions

EFTs complement lattice studies of multiparticle interactions

- > We determined the $\pi^+\pi^+\pi^+$ K-matrix at NLO in ChPT, reconciling lattice and ChPT predictions
- ➤ We extended our computations to the remaining isospin channels, finding large NLO corrections in general
- ➤ EFTs can also be used to overcome limitation of the QC, as is the case of the plane wave quantization condition

Who is Steve Sharpe to me?

Who is Steve Sharpe to me?

Steve is a role model for future researchers

- ➤ His passion and devotion motivates others to make their best effort.
- He is always on the front line of research, eager to tackle new problems.
- ➤ He is open to listen, discuss and reconsider, because **even giants bleed**.

Who is Steve Sharpe to me?

Steve is my role model of a researcher

- ➤ His passion and devotion motivates others to make their best effort.
- ➤ He is always on the front line of research, eager to tackle new problems.
- ➤ He is open to listen, discuss and reconsider, because **even giants bleed**.

Who is Steve Sharpe to me?

Steve is my role model of a researcher

- ➤ His passion and devotion motivates others to make their best effort.
- ➤ He is always on the front line of research, eager to tackle new problems.
- ➤ He is open to listen, discuss and reconsider, because **even giants bleed**.

Who is Steve Sharpe to you?

Who is Steve Sharpe to me?

Steve is my role model of a researcher

- ➤ His passion and devotion motivates others to make their best effort.
- ➤ He is always on the front line of research, eager to tackle new problems.
- ➤ He is open to listen, discuss and reconsider, because **even giants bleed**.

Who is Steve Sharpe to you?

Congratulations Steve for an outstanding career!

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 19 / 28

ChPT allows the study of **three-pion interactions**. For I = 3

Relation between \mathcal{M}_3 and $\mathcal{K}_{df,3}$ becomes algebraic in ChPT

$$\begin{split} \mathcal{K}_{\text{df,3}}^{\text{LO}} &= \mathcal{S} \left\{ \mathcal{M}_{3}^{\text{LO},\text{OPE}} - \mathcal{D}^{\text{LO},\text{OPE}} \right\} + \mathcal{M}_{3}^{\text{LO},\text{non-OPE}} \\ &\qquad \qquad \text{Removes divergencies} \\ &\qquad \qquad \text{from OPE} \end{split}$$

We determined $\mathcal{K}_{df,3}$ about threshold up to **quadratic order**

$$\textit{M}_{\pi}^{2}\mathcal{K}_{df,3} = \mathcal{K}_{0} + \mathcal{K}_{1}\Delta + \mathcal{K}_{2}\Delta^{2} + \mathcal{K}_{A}\Delta_{A} + \mathcal{K}_{B}\Delta_{B} + \mathcal{O}(\Delta^{3})$$
 Angular dependence

We study the **convergence of the threshold expansion**

We study the convergence of the threshold expansion

We study the effect of two-particle partial waves on OPE

Jorge Baeza-Ballesteros SteveFest - 1st August 2025 24 / 28

Extension to general isospin

The computation for all isospin channels has new complications:

- Quantities are matrices in flavor space [Hansen et al, 2020]
- New kinematic structures (e.g., I = 2 transforms as a doublet, I = 1 as doublet + singlet, I = 0 as antisymmetric)
- ➤ Inclusion of p and f waves
- \triangleright s-channel OPE diagram in l=1

Three-pion K-matrix at NLO in ChPT

We computed $\boldsymbol{K}_{df,3}$ at LO and NLO for all isospin channels

Three-pion K-matrix at NLO in ChPT

We study the convergence of threshold expansion (NLO only)

Three-pion K-matrix at NLO in ChPT

We study the effect of two-particle partial waves on OPE (NLO only)

