

hadron spectrum collaboration hadspec.org PRL 118 022002 (2017)
PRD 108 034513 (2023)
PRD 109 034513 (2024)

$\pi\pi$ scattering & the σ from lattice QCD – dispersing some confusion ?

Jozef Dudek

$\pi\pi$ elastic scattering in *P*-wave

expt.

$\pi\pi$ elastic scattering in *P*-wave

same story at several pion masses - simple quark mass evolution

WILLIAM & MARY

$\pi\pi$ elastic scattering in S-wave

$\pi\pi$ elastic scattering in *S*-wave

WILLIAM & MARY

dispersing confusion in $\pi\pi$ | Berkeley | July 2025

4

Jefferson Lab

ccelerator Facility

what are these amplitude parameterizations you're using ?

in coupled-channel cases, generally *K*-matrix forms – ensure exact unitarity required by f.v. guantization condition

 $[t^{-1}]_{ij}(s) = [K^{-1}]_{ij}(s) - i\rho_i(s)\delta_{ij}$

phase
$$p_i(s) = \frac{2k_i(s)}{\sqrt{s}}$$

K-matrix real and symmetric, commonly poles + polynomials

$$K_{ij}(s) = \sum_{p} \frac{c_i^{(p)} c_j^{(p)}}{s_p - s} + \sum_{n} \gamma_{ij}^{(n)} s^n$$

very flexible parameterization or slightly improving the analytic properties, a dispersively improved Chew-Mandelstam phase-space

$$[t^{-1}]_{ij}(s) = [K^{-1}]_{ij}(s) + I_i(s)\delta_{ij}$$
$$I_i(s) = I_i(s_0) + \frac{s - s_0}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{-\rho_i(s')}{(s' - s_0)(s' - s)}$$

what are these amplitude parameterizations you're using ?

in coupled-channel cases, generally K-matrix forms – ensure exact unitarity

$$[t^{-1}]_{ij}(s) = [K^{-1}]_{ij}(s) - i\rho_i(s)\delta_{ij} \qquad \qquad \text{phase} \quad \rho_i(s) = \frac{2k_i(s)}{\sqrt{s}}$$

K-matrix real and symmetric, commonly poles + polynomials

$$K_{ij}(s) = \sum_{p} \frac{c_i^{(p)} c_j^{(p)}}{s_p - s} + \sum_{n} \gamma_{ij}^{(n)} s^n$$

or slightly improving the analytic properties, a dispersively improved Chew-Mandelstam phase-space

$$[t^{-1}]_{ij}(s) = [K^{-1}]_{ij}(s) + I_i(s)\delta_{ij}$$
$$I_i(s) = I_i(s_0) + \frac{s - s_0}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{-\rho_i(s')}{(s' - s_0)(s' - s)}$$

in elastic case, easy to use wider variety ...

(variants) of effective range expansion:
$$k^{2\ell+1} \cot \delta_{\ell} = F_{\ell}(s) \left(\frac{1}{\hat{a}_{\ell}} + \frac{1}{2}\hat{r}_{\ell}k^2 + ...\right)$$

a conformal mapping in energy: $k^{2\ell+1} \cot \delta_{\ell} = \frac{\sqrt{s}}{2}F_{\ell}(s)\sum_{n}B_{n}\omega^{n}$ $\omega(s) \equiv \frac{\sqrt{s} - \alpha\sqrt{s_0 - s}}{\sqrt{s} + \alpha\sqrt{s_0 - s}}$

also Breit-Wigner, *K*-matrix as above ...

philosophy: only trying to directly parameterize along the real energy axis above threshold avoiding inserting any prior beliefs beyond unitarity – let the data tell us what needs to be there

 $I = 0, \ell = 0$

two example amplitude descriptions

 $I=2,\, \ell=0 \label{eq:I}$ two example amplitude descriptions

WILLIAM & MARY

dispersing confusion in $\pi\pi$ | Berkeley | July 2025

 $0.75 \\ 0.75$

what's going on?

why are the scalar partial-waves subject to so much parameterization variation?

are we missing some important feature of the amplitudes?

scattering amplitude in the complex energy plane

for **broad** resonances, the left-hand cut may be just as close to physical scattering – shouldn't neglect its influence

our simple K-matrix forms don't have a left-hand cut

how do we capture that physics in our amplitudes ...?

 $\pi\pi I = 0$ energy levels at $m_{\pi} \sim 239 \,\mathrm{MeV}$

can we construct amplitudes such that the left-hand cut is present and constrained?

we're treating different partial-waves as independent, should we?

crossing symmetry

the crossed-channels of elastic $\pi\pi$ scattering are also elastic $\pi\pi$ scattering

annel
$$t_{\ell}(s) = \frac{1}{64\pi} \int_{-1}^{1} d\cos\theta_s T(s, t, u) P_{\ell}(\cos\theta_s)$$

crossing symmetry gets obscured by partial-wave projection

how to practically make use of the crossing symmetry ? ... use **analyticity** to form **dispersion relations** ... relates different partial-waves (in different isospins)

(longstanding approach using experimental phase-shift data, a.k.a "Roy equations")

WILLIAM & MARY

dispersive implementation of crossing

"twice subtracted" dispersion relations

$$\tilde{t}_{\ell}^{I}(s) = \underline{\tau_{\ell}^{I}(s)} + \sum_{I',\ell'} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell\ell}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s')$$

lattice QCD input: partial-wave amplitudes in I = 0,1,2

$$\begin{aligned} \tau_0^0(s)/m_\pi &= \frac{1}{3} \left(a_0^0 + 5a_0^2 \right) + \frac{1}{3} \left(2a_0^0 - 5a_0^2 \right) \frac{s}{4m_\pi^2} \\ \tau_1^1(s)/m_\pi &= \frac{1}{18} \left(2a_0^0 - 5a_0^2 \right) \frac{s - 4m_\pi^2}{4m_\pi^2} \\ \tau_0^2(s)/m_\pi &= \frac{1}{6} \left(2a_0^0 + a_0^2 \right) - \frac{1}{6} \left(2a_0^0 - 5a_0^2 \right) \frac{s}{4m_\pi^2} \end{aligned}$$

low-order polynomials in terms of S-wave scattering lengths $a_0^I \equiv \operatorname{Re} t_0^I(s = 4m_{\pi}^2)/m_{\pi}$,

dispersive implementation of crossing

WILLIAM & MARY

"twice subtracted" dispersion relations

$$\tilde{t}_{\ell}^{I}(s) = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell\ell}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s')$$

lattice QCD input: partial-wave amplitudes in I = 0,1,2

selects those combinations of parameterizations compatible with crossing

dispersion relation output at $m_{\pi} \sim 239 \,\mathrm{MeV}$ 15 $- \underline{\tilde{t}_{\ell}^{I}(s)} = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{s_{\text{thr.}}}^{\infty} ds' \, K_{\ell\ell}^{II'}(s',s) \, \operatorname{Im} \underline{t_{\ell'}^{I'}(s')} \stackrel{\text{15}}{---}$

one particular choice:

visibly fails to satisfy the dispersion relations this set of parameterizations not compatible with crossing symmetry

PRD 109 034513 (2024)

0.771.25 0.900.750.340.59

Arkaitz Rodas hadspec 'disperser-in-chief'

dispersing confusion in $\pi\pi$ | Berkeley | July 2025

0.01

1.17

$\underline{\tilde{t}_{\ell}^{I}(s)} = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell\ell}^{II'}(s',s) \operatorname{Im} \underline{t_{\ell'}^{I'}(s')}^{16} - \frac{16}{2} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell\ell}^{II'}(s',s) \operatorname{Im} \underline{t_{\ell'}^{I'}(s')}^{16} + \frac{16}{2} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell\ell}^{I'}(s',s) \operatorname{Im} \underline{t_{\ell'}^{I'}(s')}^{16} + \frac{16}{2} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell\ell}^{I'}(s',s) \operatorname{Im} \underline{t_{\ell'}^{I'}(s')}^{16} + \frac{16}{2} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell}^{I'}(s',s) \operatorname{Im} \underline{t_{\ell'}^{I'}(s')}^{16} + \frac{16}{2} \int_{s_{\text{thr.}}}^{\infty} ds' K_{\ell'}^{I'}(s',s) \operatorname{Im} \underline{t_{\ell'}^{I'}(s')}^{16} + \frac$

a different choice:

accepted/rejected combinations at $m_{\pi} \sim 239 \,\mathrm{MeV}$

parameterizations labelled by their scattering length

input S0 parameterizations

WILLIAM & MARY

σ resonance pole in dispersed amplitudes at $m_{\pi} \sim 239 \,\mathrm{MeV}$

handling the high-energy part of the integral $\cdot \tilde{t}^{I}_{\ell}(s) = \tau^{I}_{\ell}(s) + \sum_{I',\ell'} \int_{s_{\text{thr.}}}^{\infty} ds' K^{II'}_{\ell\ell}(s',s) \operatorname{Im} t^{I'}_{\ell'}(s') \xrightarrow{19}$

use a 'quark-mass scaled' Regge parameterization ...

... but observe that results are largely insensitive to this:

$$\operatorname{Re} \tilde{t}_{\ell}^{I}(s) |_{\operatorname{Regge}} = \sum_{I',\ell'} \int_{s_{\operatorname{high}}}^{\infty} ds' \operatorname{Re} K_{\ell\ell}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s') \Big|_{\operatorname{Regge}}$$

impact of high-energy part smaller than the statistical uncertainty

dispersing confusion in $\pi\pi$ | Berkeley | July 2025

WILLIAM & MARY

what about another pion mass ...

WILLIAM & MARY

21

WILLIAM & MARY

σ pole in dispersed amplitudes at $m_{\pi} \sim 283 \,\mathrm{MeV}$

impact of imposing crossing symmetry on σ pole determination

24

ccelerator Facility

WILLIAM \mathcal{C} MARY

bound state must hit threshold between $m_{\pi} \sim 330 \text{ MeV}$ and $m_{\pi} \sim 283 \text{ MeV}$, moving onto second sheet as a virtual bound state

arrival of another second sheet pole, and the move off into the complex plane below $m_{\pi} \sim 283 \text{ MeV}$ but above $m_{\pi} \sim 239 \text{ MeV}$

summary

narrow resonances - insensitive to parameterization details

broad, low-energy resonances – *potentially* sensitive to left-hand cut details

proves to be the case for the σ in elastic $\pi\pi$

fortunate in the case of $\pi\pi$ that **crossing symmetry** can be used practically via **dispersion relations** applied to lattice-origin amplitudes at relatively low pion masses for the first time

check that different partial-waves are together compatible with crossing

not enough time to show it here, but role of (Adler) subthreshold zeroes explored in relatively model-independent manner in this study

dispersed amplitudes are constrained subthreshold at $m_{\pi} \sim 239 \,\mathrm{MeV}$ 29

WILLIAM & MARY

dispersing confusion in $\pi\pi$ | Berkeley | July 2025

ccelerator Facility

dispersed amplitudes are constrained subthreshold at $m_{\pi} \sim 283 \,\mathrm{MeV}$ 30

WILLIAM \mathcal{C} MARY

dispersing confusion in $\pi\pi$ | Berkeley | July 2025

Jefferson Lab

the dispersive kernels $K_{\ell\ell'}^{II'}(s, s')$ – twice subtracted

numerical comparisons

compare to the 'lattice data'

$$\left[\tilde{\chi}^{2}\right]_{\ell}^{I} \equiv \sum_{i,j=1}^{N_{\text{lat}}} \left(\frac{\mathfrak{f}_{i} - \tilde{f}_{\ell}^{I}(s_{i})}{\Delta_{i}}\right) \operatorname{corr}(\mathfrak{f}_{i},\mathfrak{f}_{j})^{-1} \left(\frac{\mathfrak{f}_{j} - \tilde{f}_{\ell}^{I}(s_{j})}{\Delta_{j}}\right)$$

compare to the input amplitude

$$[d^2]_{\ell}^{I} \equiv \sum_{i=1}^{N_{\text{smpl}}} \left(\frac{\tilde{f}_{\ell}^{I}(s_i) - f_{\ell}^{I}(s_i)}{\Delta \left[\tilde{f}_{\ell}^{I}(s_i) - f_{\ell}^{I}(s_i) \right]} \right)^2$$

sampling amplitudes at a large but finite number of points

apply some cuts to value of each

(arbitrary, subjective, but we explored the sensitivity to the cut value)

the dusty storage room of unlabelled plots

dispersing confusion in $\pi\pi$ | Berkeley | July 2025

WILLIAM & MARY

lattice QCD approach to scattering & resonances – the cartoon

lattice QCD approach to scattering & resonances

quite a few cases explored by hadspec (at unphysical pion masses), just a sample ...

35

σ pole in unitarized chiral perturbation theory

resonance becomes a virtual bound state near m_{π} ~350 MeV ...

... then a **bound state** near m_{π} ~420 MeV

"the exact m_{π} value when this happens is not very reliable"

