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Collaborative Project Outline

Collaborating institutions:
Lawrence Berkeley National Laboratory (PI: Peter Jacobs)

Duke University (PI: Simon Mak)
University of California at Berkeley (PI: Yury Kolomensky)

University of California at San Diego (PI: Aobo Li)
Wayne State University (PI: Chun Shen)

Lead PI: Peter Jacobs, LBNL

This is a Collaborative Application. LBNL is the lead institution. Duke University, the University
of California at Berkeley, the University of California at San Diego, and Wayne State University
will be funded through sub-awards to LBNL.

Leadership structure: Since the number of collaborators in this project is modest, there is no
need for highly-structured management. The leadership structure for decision-making is flat: Jacobs
is lead PI for the project, serving as overall project coordinator and project point of contact, but all
decisions will be made by consensus with all co-PIs. Each institution also has an institutional PI
serving as coordinator and primary point of contact, as follows:

• LBNL: Jacobs is PI. Fujikawa, Poon, and Vavrek are co-PIs, with oversight and coordination
responsibilities for neutrinos (Fujikawa, Poon) and Radiological Mapping (Vavrek).

• Duke: Mak is PI, focus is multifidelity and transfer learning.

• UC Berkeley: Kolomensky is PI and Seljak is co-PI for UCB. Focus of activity is two-fold:
neutrino experiments (Kolomensky) and gradient-based sampling methods (Seljak).

• UC San Diego: Li is PI. Focus of activity is neutrino experiments.

• Wayne State: Shen is PI. Focus is Quark-Gluon Plasma studies.

Facilities: A description of each institution’s facilities, equipment, and resources that will be
made available to the team is found in Appendix 2.

Mentoring plan: Detailed description of how students and early-stage researchers will be trained
and mentored is found in Appendix 5.
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Table 1: Proposed project budget.

Project role Name Institution Year 1 ($K) Year 2 ($K) Total($K)

Lead PI Jacobs LBNL/UCB 855 881 1,736
Co-PI Mak Duke 171 180 351
Co-PI Li UCSD 191 222 413
Co-PI Shen Wayne State 142 145 288

Total 1,359 1,429 2,787
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1 Introduction

Bayes’s Theorem is a powerful tool for the quantitative analysis of measurements and numerical
calculations in many fields of study, by enabling systematic incorporation of prior knowledge and of
correlations and covariance between elements of the measurements and calculations. Probabilistic
Bayesian analysis can address “Inverse Problems,” in which causal factors are deduced from mea-
surements that are influenced by them, thereby testing model formulations and constraining model
parameters. Probabilistic Bayesian analysis can also be applied to challenging computations, such
as the emulation of complex simulations and image de–noising. Probabilistic Bayesian calculations
are often highly demanding computationally, however, requiring Machine Learning (ML)-based
methods for the efficient utilization of practically obtainable resources.

This proposal requests funding to develop and implement general ML-based approaches to
Bayesian probabilistic analysis methods, including uncertainty quantification, emulation, inference,
and de–noising, for application to a broad range of Nuclear Physics (NP) research areas. These
areas include the measurement of the mass and fundamental nature of the neutrino; study of the
Quark-Gluon Plasma that filled the early universe; and mapping of natural and anthropogenic
radiation environments. The proposal co–PIs are Nuclear Physicists with leading roles in each of
these areas, and data scientists developing state–of–the–art ML-based methods for probabilistic
Bayesian analysis.

Figure 1: Schematic representation of the key computational requirements for probabilistic Bayesian
analysis and UQ of the NP projects considered in the proposal. The left column indicates the
various data sources, while the right column specifies the target analyses. The middle box places
each project in a two-dimensional space of computational complexity of the forward model (vertical)
and posterior dimensionality (horizontal).

This is a renewal proposal, building on the developments of the currently-funded Bayesian
Uncertainty Quantification (BUQ) project. In this proposal the current project is labeled “BUQ
Phase 1,” with the renewal project labeled “BUQ Phase 2.” BUQ Phase 1 has focused on a limited
set of ML-based Bayesian analysis algorithms to address the inverse problem, and is undertaking a
comparative study of their performance in these diverse environments. The BUQ Phase 2 project
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will extend these methods and explore new approaches, including generative modeling and iterative
inference, and additionally explore new approaches to surrogate modeling and emulation to accelerate
complex forward model calculations, and to anomaly detection.

The building blocks of Bayesian probabilistic methods include classical algorithms such as
Gaussian Processes, Multi-Fidelity Surrogate Modeling, and Adaptive Sampling. The proposed
research will use these building blocks to construct novel AI algorithms for challenging Bayesian
inference calculations and to carry out computationally expensive simulations. The specification of
meaningful, quantitative uncertainties in such calculations is often challenging, and a major focus of
the project is the development of methods for that purpose (Bayesian Uncertainty Quantification,
or UQ).

Figure 2: Tabulation of BUQ methods and physics projects, indicating the method applied to each
project in BUQ Phase 1 and proposed for BUQ Phase 2.

Figure 1 illustrates the computational requirements of the NP projects considered in this proposal,
in terms of cost of the forward model for calculating likelihoods and the dimensionality of the
posterior parameter space. The various projects differ by several orders of magnitude in these
metrics. The proposed research presented in Sect. 3 will explore several probabilistic Bayesian
analysis methods to address these challenges, within a common framework. This comprehensive
approach promises unique insight into the applicability and performance of such ML-based methods
for analyses of widely differing character.

Figure 2 compares BUQ Phase 1 and Phase 2, tabulating the ML-based methods utilized for each
physics project in the two phases. In Phase 1, each algorithmic method was applied to more than one
physics project, demonstrating their broad applicability and illustrating the BUQ Project approach
of their comparative assessment under different operational conditions. The portfolio of methods
will be expanded in Phase 2, with application to more than one physics project (except for the last
method, whose additional applications are under discussion), thereby extending the cross-cutting
approach of the BUQ project for the comparative assessment of the analysis methodologies.

2 Project Objectives and Timeline

2.1 Neutrinos

Underground experiments based on discrete solid-state detectors, such as LEGEND, CUORE, and
CUPID, are the workhorse for the search of rare and novel phenomena including neutrinoless
double-beta decay (NDBD). If NDBD is observed, crucial insights into the fundamental nature of
neutrino mass would be uncovered. Bayesian probabilistic models have demonstrated significant
potential in addressing various challenges in neutrino experiments. Bayesian probabilistic models
have demonstrated significant potential in addressing various challenges in neutrino experiments.
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Meanwhile, there are many other critical yet unsolved challenges in neutrino physics, which could
benefit from Bayesian probabilistic models. Solving these challenges could significantly accelerate
the science delivery of major results by many different neutrino experiments. Building on our
past success in developing the Rare Event Surrogate Model (RESuM) and incorporating advanced
sampling techniques into NDBD spectrum fitting, we propose the following key research objectives
in phase 2:

• Bayesian background model for next-generation NDBD experiments: we propose to enhance
RESuM with invertible neural networks and anomaly detection capabilities to create an
end-to-end background modeling tool that can efficiently identify and analyze background
sources in neutrino experiments, replacing traditional computationally-intensive simulation
methods while providing more accurate results with robust uncertainty estimates.

• Advanced Sampling Techniques in NDBD Bayesian Fit : we propose to implement advanced
gradient-based sampling methods (HMC and MCLMC) combined with domain-specific physics
knowledge to overcome computational bottlenecks in analyzing high-dimensional neutrino
detector data, enabling more detailed sensitivity studies for neutrinoless double beta decay
experiments.

• Enhance and Benchmark the RESuM Model : We propose to further enhance the RESuM
model with advanced active learning algorithms and additional benchmarking study

• Precise Spectrum Modeling in KATRIN : we propose to apply RESuM to KATRIN to model
tritium beta decay end-point spectra more efficiently while providing uncertainty estimates
needed for neutrino mass measurements.

• Calibration Source Design in CUPID : We propose to use RESuM to design calibration source
for the CUPID experiment.

2.2 Quark-Gluon Plasma

Quantum Chromodynamics (QCD) describes the strong interactions of quarks and gluons, which form
a deconfined state called the Quark-Gluon Plasma (QGP) under extreme conditions. Multi-messenger
QGP physics leverages diverse observables—ranging from bulk particle yields to high-momentum
jet probes—to study QGP properties comprehensively. The complexity of QGP dynamics, span-
ning multi-stage collision processes and high-dimensional parameter spaces, necessitates advanced
computational methods and robust uncertainty quantification (UQ).

This research proposal addresses these challenges by advancing computational techniques and
machine-learning-based approaches for multi-messenger QGP physics. By leveraging innovations
in Gaussian Process (GP) modeling, Bayesian methods, and AI-driven data analysis, we aim to
enhance the precision and scope of QGP studies, enabling new insights into the behavior of strongly
interacting matter under extreme conditions. The following key objectives are included in Phase 2:

• Deep Heteroskedastic Gaussian Process (GP) Modeling: Develop and benchmark advanced
surrogate models, such as the deep heteroskedastic GP, to interpolate high-dimensional
parameter spaces efficiently. This includes optimizing model training with varying statistical
and fidelity precisions and applying these methods to datasets from QGP studies for enhanced
Bayesian uncertainty quantification (UQ).
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• Boundary-Safe Bayesian Model Selection: Enhance the accuracy of GP emulators at model
prior-space boundaries by incorporating boundary-informed training, ensuring robust perfor-
mance in physically significant limits.

• Data-Driven Theory Uncertainty Quantification: Address theoretical uncertainties in QGP
modeling by integrating data-driven UQ methods using GPs to mitigate overfitting and bias
in parameter estimations.

• AI/ML Tools for High-Dimensional Analysis: Leverage machine learning techniques, such as
normalizing flows and manifold learning, to analyze and explore high-dimensional distributions,
enabling insights into multi-variable correlations and posterior distributions for QGP analyses.

• Generative AI Models for QGP: Develop AI-based generative models to reduce computational
costs in simulating heavy-ion collisions while maintaining physical constraints and addressing
challenges in uncertainty quantification for these models.

• Iterative Multi-Messenger Bayesian Analysis: Implement iterative Bayesian methods to refine
parameter space exploration efficiently by sequentially incorporating experimental observables.

• Collider Monitoring: Apply Bayesian change detection techniques to monitor and ensure
data quality in collider experiments, enhancing fault detection in real-time with improved
uncertainty quantification.

2.3 Radiological Mapping

Radiological mapping seeks to reconstruct spatial-domain radiation intensity distributions from
time-domain radiation counts measured as a detector moves about the mapping area. The Applied
Nuclear Physics program at LBNL is a world leader in 3D radiation mapping technology, and
over the past decade has developed a framework known as radiological scene data fusion (SDF)
for combining radiation data streams with contextual data such as lidar and/or visual models
of the scene [1–3]. Quantitative reconstruction algorithms are then used to attribute measured
radiation counts to spatial elements (pixels or voxels) in the scene, producing a maximum likelihood
(or maximum a posteriori) estimate of the true radiation distribution. BUQ Phase 1 focused on
exploring Bayesian methods for improving the radiation images themselves, as well as producing fast
and reliable uncertainty quantification image estimates, in order to produce high-quality, actionable
radiation information in near-real-time, which is important for informing human operators where to
search or how to avoid high contamination, as well as for driving autonomy algorithms on robotic
mapping platforms. To build on our work in phase 1, we intend to explore the following topics in
phase 2:

• MCMC uncertainty quantification: we propose to implement the new Markov Chain Langevin
Monte Carlo (MCLMC) UQ method developed in phase 1 on real radiation mapping data and
deploy it on a live mapping system in near-real-time.

• Data sufficiency : we propose to explore Bayesian/ML methods to determine whether a
dataset is sufficient for a “good quality” reconstruction, as well as for performing or enhancing
reconstructions with low-statistics data, either through pre-analysis design optimization or
post-analysis processing.

Table 2 shows the timeline and project effort to accomplish the project objectives. The PIs are
listed by name, whereas staff and postdoc effort specifies FTE fraction. The student effort is not
quantified.
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Table 2: Timeline for project objectives. Parentheses in columns 3 and 5 show postdoc effort in
fractions of FTE.

Topic Y1 PI +
staff

Y1 PD + students Y2 PI +
staff

Y2 PD + students

Neutrinos

Bayesian background model Li, Poon,
Fujikawa,
Mak

LBNL(0.5),
UCSD(0.5),
UCSD(students),
Duke(students)

Enhance/Benchmark RESuM Li, Poon,
Fujikawa,
Mak

LBNL(0.5),
UCSD(0.5),
UCSD(students),
Duke(students)

Advanced Sampling Tech-
niques

Kolomensky,
Poon, Fu-
jikawa,
Seljak

LBNL(0.25),
UCB(0.5)

Kolomensky,
Poon, Fu-
jikawa,
Seljak

LBNL(0.25),
UCB(0.75)

Spectrum Modeling KATRIN Poon LBNL(0.25) Poon LBNL(0.25)

Source Design CUPID Kolomensky UCB (0.25) Kolomensky UCB (0.25)

QGP

Heteroskedastic GP Shen, Ja-
cobs, Mak

WSU (0.25),
LBNL (0.20),
Duke (students)

Boundary-Safe Model Selec-
tion

Shen, Ja-
cobs, Mak

WSU (0.25),
LBNL (0.1), Duke
(students)

Theory UQ Shen WSU (0.25) Shen WSU (0.25)

High-dim Analysis Shen, Sel-
jak, Mak

WSU (0.25), UCB
(0.25), Duke (stu-
dents)

Generative AI Shen, Ja-
cobs, Mak

WSU (0.25),
LBNL (0.1), Duke
(students)

Iterative Multi-Messenger
Analysis

Shen, Ja-
cobs

WSU (0.25),
LBNL (0.20)

Shen, Ja-
cobs

WSU (0.25),
LBNL (0.20)

Collider Monitoring Jacobs,
Mak

LBNL (0.1), Duke
(students)

Jacobs,
Mak

LBNL (0.1), Duke
(students)

Radiation mapping

Data sufficiency Vavrek,
Mak

LBNL (0.25) Vavrek,
Mak

LBNL (0.25)

Langevin UQ Vavrek,
LBNL staff
(0.1)

Vavrek,
LBNL staff
(0.1)
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3 Progress Report and Proposed Research

3.1 Algorithms

3.1.1 Progress report

The Algorithms working group, which focuses on Bayesian UQ methods and algorithms, has made
substantial progress in BUQ Phase 1. This includes the development of algorithms outlined in the
initial proposal, as well as innovative Bayesian ML/AI methods that tackle new NP problems arising
from collaborative discussions.

The methods proposed for BUQ Phase 1 involve the development of multi-fidelity and transfer
learning Bayesian surrogates for NP applications. This work has resulted in three publications
on multi-fidelity learning. Ref. [4] presents a new multi-fidelity Gaussian Process (GP) surrogate
which leverages graphical dependencies between multi-fidelity forward simulators. Ref. [5] proposes
a new conglomerate multi-fidelity GP which leverages multiple fidelity parameters for cost-efficient
surrogate modeling. Ref. [6] investigates experimental design algorithms for optimizing multi-fidelity
training runs for such models. This work has also resulted in two papers on transfer learning [7, 8]
which propose new Bayesian transfer learning models that robustly transfer information from related
systems for training surrogates of a costly target simulator. These methods have been applied for
emulating QGP observables, with promising preliminary results (Sect. 3.3.1).

Fruitful interdisciplinary discussions within the BUQ project have stimulated additional progress
in new Bayesian AI/ML methods and algorithms development. A topic of great interest is the
scalability of GPs for massive or complex data [9]. For this, we have published two papers [10, 11],
with another in revision [12]. Another direction of interest for NP is active learning [13] – the
sequential collection of training data to maximize learning performance. We have published
conference proceedings on this topic [14], and our active learning algorithm played a central role in
a recent major JETSCAPE publication [15]. Two additional topics of interest are physics-guided
ML and Bayesian optimization, discussed further below. We have published four papers on these
topics [16–19] and are preparing software for full-scale implementation in BUQ projects.

Collaborative discussions during BUQ Phase 1 have raised interest in Bayesian online monitoring
of complex collider data, which has generated several publications. Ref. [20] explores the use of
topological analysis (a rising area in ML) for online detection of abrupt changes in data patterns.
This work has received prominent awards: the American Statistical Association (ASA) Editor’s
Choice Collection Award, and first place Student Paper Awards in the INFORMS Section on Data
Mining and the ASA Section on Physical & Engineering Sciences. Refs. [21–24] investigate novel
Bayesian detection methods for online fault detection and diagnosis with complex high-dimensional
data. Preliminary results in BUQ NP projects are promising, as discussed in later sections.

3.1.2 Proposed research

Bayesian Manifold-Embedded Surrogate Models One key bottleneck for timely Bayesian
Inference in NP involves the costly nature of a complex forward simulation, which is often required
in evaluating the desired posterior distribution, e.g. in our QGP project (Sect. 3.3). A full Bayesian
analysis can thus be prohibitively costly, and Bayesian ML with principled UQ is needed to accelerate
such a process, enabling incisive analyses with achievable resources.

Bayesian surrogate modeling [25] provides a proven solution. The simulator is first evaluated at
a designed set of n parameters, then such data are used to train a probabilistic predictive model
which emulates the forward simulator efficiently over the parameter space. This trained model (with
associated uncertainties) replaces the expensive simulator to accelerate Bayesian Inference. GPs [9]
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are a popular class of Bayesian surrogates with broad scientific applications [26–30], including in
NP studies [31–33]. This includes recent promising work on “deep” GPs that incorporate multiple
layers of GPs via its kernel length-scale parameters; see [34,35] and work [4, 5] by Co-PI Mak. For
NP applications, GPs and their deep variants have two key advantages over alternate Bayesian
surrogates (e.g., Bayesian neural networks [36, 37], stochastic polynomial chaos [38, 39]). First, GPs
provide a flexible predictive model with reliable UQ, supported by Bayesian learning theory [40];
alternate Bayesian surrogates, in contrast, can yield erratic uncertainty quantification with limited
training data [41,42]. Second, GPs provide a closed-form quantification of predictive (epistemic)
surrogate uncertainty. This permits a closed-form, easy-to-evaluate and differentiable posterior
density, which enables the use of state-of-the-art MCMC samplers for Bayesian Inference (see recent
JETSCAPE papers [31–33] on the QGP). We thus leverage GPs and their deep variants below.

Key methodological innovations are needed to harness the full power of GP surrogates for NP,
however. One obstacle is, with the costly simulator, only limited training data (i.e., small n) can
be simulated over the parameter space Θ ⊆ Rd for surrogate training, where d is the number of
parameters. This poses a significant bottleneck for our NP projects: e.g., for the QGP, with a
moderate number of ∼ 20 parameters, one may require O(1020) simulation runs over Θ for accurate
GP training [40]. A promising solution is to identify embedded low-dimensional manifold structure
within the simulator, which can be more easily learned from limited data. Existing work on GPs
with such embedded structure includes the single-index GP [43], Gaussian ridge functions [44,45],
and projection pursuit GPs [46,47]; see also related works by Co-PI Mak [26–28,48]. Such surrogates,
however, encounter two limitations in NP. Firstly (i), they largely do not quantify uncertainty in the
learned manifold, resulting in overconfident surrogates that lead to spurious findings. Secondly (ii),
they do not account for the intrinsic complexity of heavy-ion measurements and calculations of the
QGP, in which an experimental observable can be influenced by multiple different physics processes.
This may lead to poor surrogates with unreliable uncertainties given limited data, as we show later.

We thus propose a new Bayesian surrogate, the Additive Multi-Index GP (AdMIn-GP), to
address limitations (i) and (ii). Let yi be the observable simulated at parameters θi ∈ Θ, i = 1, · · · , n.
We presume yi follows the model:

yi = η(θi) + ϵ, η(θ) =
L∑
l=1

ηl(θ) :=
L∑
l=1

gl(Mlθ), ϵi
i.i.d.∼ N (0, γ2), i = 1, · · · , n, (1)

where η(θi) is the simulated observable mean, and ϵi models statistical error. Here, each component
ηl(θ) follows a “ridge” function [49]; it fluctuates only along the active subspace [50] spanned by
Mlθ, where Ml ∈ Rp×d, p ≪ d, is an embedding matrix projecting θ onto a lower-dimensional
manifold. Ridge functions can be justified for simple physical systems [51], and with careful training
of Ml from data, have shown empirical success [50, 52] in modeling simple phenomena with a single
dominant physics, including in NP [17]. Our model (1) thus accounts for the complex nature of
heavy-ion data via multiple ridge functions ηl, with each employing a distinct active subspace via
Ml, addressing (ii). We then assign independent GPs on gl ∼ GP{µl, kl(·, ·)}, where µl and kl are its
mean and covariance kernel; its parameters can estimated from data via maximum likelihood [53].

Recall that existing manifold-embedded GPs lack UQ for manifold estimation (limitation (i)),
resulting in overconfident surrogates. We address this in a Bayesian approach by assigning double-
exponential shrinkage priors [54] on each entry of {Ml}Ll=1. Such priors provide shrinkage on the
many model parameters, allowing for accurate Bayesian inference with limited data [55]. Using a
carefully-constructed variational inference scheme adapted from [56], we can then obtain a closed-
form predictive distribution for the response surface η. Thus, the AdMIn-GP not only captures the
desired complex multi-physics structure of NP observables with principled UQ, it also provides a
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closed-form, easy-to-evaluate and differentiable posterior density for efficient Bayesian Inference via
state-of-the-art MCMC methods – a key reason for the use of GP surrogates in NP.

Preliminary experiments on the surrogate modeling of a QGP simulation [57] are promising,
showing improved probabilistic predictive performance (over 40% reduction in test error) over
standard GPs [9], existing manifold-embedded GPs [43,44,47] and a popular probabilistic ML bench-
mark [58]. The AdMIn-GP also shows excellent coverage for its confidence intervals, highlighting
the importance of Bayesian manifold learning for reliable surrogates with trustworthy UQ.

During BUQ Phase 2, we will fully develop the AdMIn-GP model for reliable and cost-efficient
surrogate modeling. An important direction is the integration of deep GPs to improve surrogate
expressiveness. We will adopt a recent promising deep GP formulation [34,35] (see also work by
Co-PI Mak [4, 5]) within the AdMIn-GP, and extend the elliptical slice sampling algorithm in [35]
for efficient model training. Another essential development for the BUQ project is the extension of
the AdMIn-GP to emulate data with widely varying statistical precision (Sect. 3.3.2). This variation
is known in ML as heteroskedasticity [25]. To model this, we will adopt the approach in [59], by
allowing the noise variance γ2 to vary over the parameter space, then model its log-variance by a
separate GP over Θ. This heteroskedastic extension can then be fit by adapting the Hamiltonian
Monte Carlo algorithm in [59]; more on this for the QGP project in Sect. 3.3. Finally, we will
develop active learning techniques ( [13], also works by Co-PI Mak [29,60]) to select optimal training
points. This is a rising area in ML, and we will leverage recent techniques for GPs [25] to improve
the AdMIn-GP; see [15] for our preliminary results on the QGP with active learning.

We will then integrate the AdMIn-GP for tackling neutrinos detector optimization problem
in Sect. 3.2. There, the goal is to minimize the probability of neutron backgrounds entering the
neutrino detector via a careful optimization of neutron moderator design parameters θ. We will
leverage Bayesian optimization methods [61] (e.g., the Expected Improvement algorithm [62,63]) to
derive analytical and differentiable acquisition functions for sequential sampling. Further details are
provided in Sect. 3.2.

Boundary-Informed Surrogate Models A complementary strategy for improving Bayesian
surrogates in problems with limited training data is the integration of known physics on a response
surface η(·) (“physics-integrated ML” [30, 48, 64–69]). This includes the incorporation of known
boundaries of η along the parameter space Θ [70–72]. For the BUQ QGP project of simulating
viscous fluid dynamics, this boundary corresponds to values of shear and bulk viscosity of zero,
i.e., the ideal hydrodynamics model, which is computationally much less expensive than viscous
hydrodynamics (Sect. 3.3). Such computationally–efficient boundary information can be invaluable
for efficient improvement of surrogates, and there is thus a crucial need for the design and modeling
of boundary-informed Bayesian surrogates. Our current work on neutrino detector design has shown
that incorporating additional physics information into Bayesian probabilistic models significantly
enhances both model accuracy and statistical coverage (see Sect. 3.2.1).

Existing work [70,71,73] largely focuses on the modeling of boundary-informed GPs. This includes
a recent paper by Co-PI Mak on the BdryGP model [72], which integrates boundary information of
the form {η(θ) : θj = 0} and/or {η(θ) : θj = 1}, i.e., left and/or right boundaries for a parameter j.
One appeal of the BdryGP is, conditioned on training data and boundary information, it provides
an analytic predictive distribution, which yields a closed-form, easy-to-evaluate and differentiable
posterior density for downstream Bayesian Inference via state-of-the-art MCMC methods. The
BdryGP further provides a theoretically well-understood improvement [72] over standard GPs that
do not leverage boundary information, enabling improved surrogate predictions and reductions in
its uncertainties.

9



Figure 3: Visualizing
the proposed boundary
maximin design (known
boundaries are marked in
pink).

A crucial step for accurate surrogates is the design of its training
experiment runs over the parameter space [25]. Such experimental design
is largely unexplored for boundary-informed GP surrogates, but has
potential for considerably improving performance. Existing surrogates
in NP use Latin hypercube designs (LHDs; [74]), which may place points
on or near known boundaries; this can greatly reduce the information
provided on the response surface η(·). To address this, we propose a
new boundary maximin design for selecting simulation runs for boundary-
informed GP surrogates. Our design targets two objectives. First, it
targets the maximization of the closest two design points; this is known
as the “maximin” criterion in statistical learning [75]. Second, it targets
the maximization of the closest distance between any design point and
a known boundary. This joint optimization ensures minimal overlap
of information between design points and known boundaries. Figure 3
shows an optimized n = 20-point boundary maximin design for d = 2 parameters. Our design can
be shown to yield maximum information gain on the response surface η(·) under the BdryGP, in
the asymptotic sense of [75]. For computation, our design can be optimized via the integration
of exchange-type algorithms [25] with particle swarm optimization [76, 77]. Using this, designs
with n = O(100) points for d = 20 parameters can be efficiently optimized in seconds. Preliminary
experiments on a suite of test functions [78] show that, using the BdryGP surrogate with the
proposed designs, one achieves a ten-fold reduction in test prediction error compared to the use of
standard GPs (with no boundary information) with LHDs.

During BUQ Phase 2, we will fully develop the BdryGP and the proposed boundary maximin
design for cost-efficient surrogate modeling in our NP projects. One direction is active learning [13],
which leverages the trained surrogate with boundary information for selecting subsequent runs;
active learning has shown promise for our QGP Bayesian analysis [15]. To do this, we will extend
active learning approaches [79, 80] within the BdryGP to provide closed-form acquisition functions
for sequential sampling. Model expressiveness will be improved by incorporating the deep GP
framework in [34,35], via multiple GP layers on the BdryGP length-scale parameters. Finally, we
will apply the developed BdryGP surrogate framework to BUQ projects (Sects. 3.2 and 3.3).

Bayesian Online Change Detection Another bottleneck for timely Bayesian Inference in NP
is the need to make prompt decisions with massive complex data. This data can take the form
of high-dimensional structured images in NP, and the goal is to use such data to quickly detect,
i.e., in an online fashion, abrupt system changes. For example, in the ALICE Electromagnetic
Calorimeter [81], energy deposition data are recorded many times per second in over 17,000 channels.
Such data can be represented as a stream of high-dimensional images [82], and require timely
monitoring to ensure data quality with confidence. There is thus an urgent need for an online
Bayesian image change detection method that performs prompt anomaly detection with principled
uncertainty quantification to guide such monitoring.

Key methodological innovations are needed to tackle such needs for NP. Existing work on online
change-point detection are largely frequentist, and do not fully account for uncertainties in either
image modeling or change detection. There is a growing literature on Bayesian online change
detection [83–85], but such methods do not scale for the large structured images in NP. By ignoring
such image structure (e.g., spatial correlations), the online detection of anomalies can be greatly
delayed using high-dimensional data [20], which is undesirable for prompt data quality monitoring.

To address these limitations, we propose a new online image Bayesian Change Detection (iBCD)
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method. Our model builds upon the deep Gaussian Markov Random Field (DGMRF) model in [86],
which provides a probabilistic Bayesian framework for expressive image modeling. With this, iBCD
leverages a carefully-designed message passing algorithm [87,88] to efficiently compute the posterior
distribution of its run length [85], i.e., the length of time since its last change point. A key appeal
of iBCD is its computation of this run length posterior in O(pix2) work at each time step, where
pix is the number of image pixels; this offers considerable speed-up over existing Bayesian change
detection algorithms [85]. Preliminary experiments on the drift tube detector monitoring set-up
in [89] show much quicker change detection performance over the state-of-the-art, with reliable
Bayesian UQ to guide downstream decisions.

During BUQ Phase 2, we will fully develop the iBCD for full-scale NP implementation. This
includes the integration of GPUs [90] for timely detection with massive images. Preliminary
experiments with GPUs show that the run length posterior can be computed in seconds for images
with O(106) pixels; we will develop this for scalable detection in NP applications. Another direction
is the use of iBCD for anomaly diagnosis, which targets the root cause of a detected anomaly.
We will develop a Bayesian diagnosis framework using iBCD, extending related work by Co-PI
Mak [20]; this provides a probabilistic tool that guides subsequent actions to ensure data quality
with confidence. Details on its use for collider monitoring are provided in Sect. 3.3. We will also
explore the use of the DGMRF later in Sect. 3.4 for inpainting missing pixels in radiological maps.

3.2 Neutrinos

Underground experiments based on discrete solid-state detectors, such as LEGEND, CUORE, and
CUPID, deploy large arrays of highly sensitive detectors designed to search for rare and novel
phenomena, including neutrinoless double-beta decay (NDBD). If NDBD is observed, crucial insights
into the fundamental nature of neutrino mass would be uncovered. Bayesian probabilistic models
have demonstrated significant potential in addressing various challenges in neutrino experiments, as
evidenced by our past research progress. As detailed in our Progress Report Section 3.2.1, we have
developed a Rare Event Surrogate Model (RESuM) for neutrino detector design optimization and
built the foundation to incorporate gradient-based samplers into Bayesian spectrum fitting.

Meanwhile, there are many other critical yet unsolved challenges in neutrino physics, which could
benefit from Bayesian probabilistic models. Solving these challenges could significantly accelerate the
science delivery of major results by many different neutrino experiments. These challenges include
(1) background modeling in neutrinoless double beta decay (0νββ) experiments; (2) advanced
sampling techniques in 0νββ Bayesian fits; (3) precise spectrum modeling in direct neutrino mass
measurement experiments. Building on our past success, we plan to design end-to-end AI algorithms
to solve these challenges by incorporating advanced Bayesian methods, such as invertible variational
autoencoders, anomaly detection, and Hamiltonian Monte Carlo sampling. In Section 3.2.2, we will
discuss our proposed research which aims to solve each of the challenges in detail (see Figure 5 for
an overview of the connections across the proposed projects).

3.2.1 Progress report

Using support from the BUQ Phase 1 project, we developed and applied the Rare Event Surrogate
Model (RESuM) [91] to address a specific detector design challenge in the LEGEND experiment. This
work has been submitted to The Thirteenth International Conference on Learning Representations
(ICLR 2025). The physics motivation is to design a neutron moderator that wraps around the
detector array to eliminate one of the primary background sources, 77(m)Ge [92,93]. The neutron
moderator can be parameterized by a design parameter vector θ containing five design variables.
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RESuM is a surrogate model that maps design parameters θ to the design metric y = m/N , where
m represents successful instances out of N total simulated instances, given limited access to large N .
The model leverages two simulation types: an expensive, accurate High-Fidelity (HF) simulation
requiring 170 CPU hours, and a faster, less accurate Low-Fidelity (LF) simulation needing only 0.15
CPU hours. RESuM employs a Conditional Neural Process (CNP) to generate predictive scores µ
based on both design parameters θ and instance-specific parameters ϕ, followed by a Multi-Fidelity
Gaussian Process (MFGP) that combines LF and HF simulations to estimate HF metrics. Lastly,
we used a simple active learning algorithm to optimize the model by selecting new design parameters
for additional HF simulations, as shown in Figure 5 (left).
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Figure 4: [Top] Statistical coverage of the RESuM model, showing proper coverage is reached
for randomly generated out-of-sample simulations. [Bottom] Statistical coverage of a traditional
Gaussian Process model trained and validated on the same data, where poor coverage is observed.

Experimental results show that the trained RESuM model successfully identified the optimal
design which reduces neutron background by (66.5±3.5)%, while using only 3.3% of the computational
resources compared to traditional grid search methods. Given the input design parameter θ, RESuM
not only predicts the design metric ŷ but also provides an associated uncertainty σ̂. In [91], additional
validation was performed to ensure that ŷ± σ̂ is a statistically reliable prediction. This was achieved
by generating 100 out-of-sample HF simulations for randomly selected θ values and using RESuM
to predict ŷ ± σ̂. As shown in Figure 4 (top), 69% of the out-of-sample HF simulations fall within
the 1-σ band of ŷ, 95% within the 2-σ band, and 100% within the 3-σ band. These results closely
match the expected coverage of a standard normal distribution, which is 68.27%, 95.45%, and
99.73% for 1, 2, and 3 σ, respectively. For comparison, we trained a simple Gaussian Process (GP)
surrogate model on the same data and validated it on the same out-of-sample HF simulations. The
GP model showed significantly poorer coverage, with 12%, 24%, and 47% coverage at 1, 2, and 3
σ, respectively. These results demonstrate that RESuM can perform robust statistical inference,
ensuring that the ground truth is well-covered by the posterior predictive intervals.

On the spectrum fitting front, we have initiated the migration of probabilistic models and
analysis infrastructure in the CUORE experiment to ensure compatibility with gradient-based
samplers. This process involved evaluating existing Bayesian analysis software for compatibility
with experimental workflows while maintaining low-level access for sampler modification and tuning.
We identified computational components in the previous analysis model that were incompatible
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with automatic differentiation for fast gradient computation, and subsequently modified the model’s
evaluation framework to be fully differentiable.

3.2.2 Proposed research

Figure 5: Architecture of the RESuM model and overview of connections across proposed projects.

Bayesian background model for next-generation 0νββ experiments A precise understand-
ing of background compositions is crucial for next-generation 0νββ experiments, including CUPID
and LEGEND. Background sources – natural radioactivity and cosmic-ray interactions – could
originate at arbitrary locations within the detector under various conditions, propagate through
detector materials, and eventually create signals mimicking those from 0νββ in its region of interest
(ROI). The traditional method relies on extensive simulations to “grid-search” all possible locations,
background types and conditions, which usually comes with high degeneracy. This process is also
extremely slow and often requires a prodigious amount of computational power. Currently, both
LEGEND and CUPID use this method to model their backgrounds.

The Rare Event Surrogate Model (RESuM) is a statistically robust, uncertainty-aware deep
learning model designed to accelerate computationally intensive tasks in rare-event physics. As
demonstrated in the manuscript, RESuM offers two significant advantages over traditional, resource-
intensive Monte Carlo methods (even with biasing): (1) it achieves valid results with up to 97%
less computational power, and (2) each of its predictions is accompanied by a statistically robust
measure of uncertainty. As the creators of RESuM, we aim to refine and expand its capabilities,
enabling it to address a wider range of challenges in neutrinoless double beta decay (0νββ) and
direct neutrino-mass measurement experiments. Specifically, we propose enhancements to support
high-dimensional objective functions and advanced active learning methods, extending RESuM’s
reach to solve pivotal issues in the LEGEND and CUPID (0νββ) experiments. Additionally, we plan
to leverage the upgraded RESuM model for high-precision modeling in the KATRIN experiment,
where progress is currently constrained by computational limitations. The success of this proposal
would position RESuM as a scalable solution not only for neutrino experiments but also for broader
scientific applications that require extensive simulations.

The success of RESuM shows that Bayesian modeling can address such optimization problems
efficiently by incorporating additional prior information to break the degeneracy (in RESuM, we
use CNP to break the degeneracy between 1 (background created) and 0 (background not created)).
However, from an AI perspective, background modeling is considered an inverse problem: where
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we would like to surrogate the relationship from background composition to the energy spectrum,
but the goal is to understand background composition. This requires us to “inversely redesign” the
RESuM model with invertible neural networks. The development involves two steps. (1) Using the
RESuM model to generate a detection probability map, which maps different spatial distributions
of various background sources into their signal rate in the energy spectrum. This can be done via
the Forward RESuM model described in the detector design challenge, the key difference is that
now the surrogate model output is an entire energy spectrum instead of a single design metric.
Doing this with the RESuM model supports more accurate source inferences while reducing false
positives and computational cost. (2) We will design an Invertible RESuM model, where the CNP
is replaced by an invertible neural network, e.g., a Variational Auto Encoder or Normalizing Flow.
This would allow us to infer the detector configuration and source properties that best explain the
observed data. (3) We will develop anomaly detection techniques over the detector spectrum to
detect unusual background excess, such as asymmetric peak shape or small background excess.

Combining these developments, we will have an end-to-end background modeling tool: when a
background excess is found by anomaly detection (3), we can leverage the RESuM-generated detection
probability map (1) to analyze these bins with excess, and eventually use the invertible model (2) to
identify possible location and the background types. This approach allows us to automatically detect
unknown background sources, without relying on expensive and often degenerate simulations. Given
that both LEGEND and CUPID use a similar approach for background modeling, this end-to-end
AI algorithm can provide a fast and efficient way to identify backgrounds in both CUPID and
LEGEND. Moreover, as a predecessor of LEGEND, the Majorana Demonstrator experiment
also uses a similar method to perform background modeling. The success of this end-to-end AI
algorithm could provide an independent way to validate the accuracy and provide hints for the
currently ongoing MJD background modeling effort.

Advanced Sampling Techniques in NDBD Bayesian fits Analyses for these NDBD ex-
periments are demanding in that they require high spatio-temporal granularity and specificity in
modeling detector response, which is necessary to maximize the experiments’ sensitivity. They
require a large number of the so-called nuisance parameters – numbering in the hundreds to tens
of thousands – that are crucial for accurately calibrating and understanding the behavior of the
discrete solid-state detectors. These parameters need to be precisely accounted for, demanding
statistical methods capable of handling this high-dimensional problem space.

To tackle these challenges, Bayesian computational techniques, such as Markov Chain Monte
Carlo (MCMC), provide a powerful framework that allows experiments to robustly incorporate
and quantify the impact of nuisance parameter uncertainty into statistical models. These methods
sample across the entire landscape of parameters, offering a more comprehensive view of the
problem as compared to point-wise estimators such as maximum likelihood methods. However, the
current MCMC approaches used by the experiments encounter significant computational bottlenecks
when dealing with such high-dimensional problems, leading to computational inefficiencies. The
computational requirements result in longer model inference times and a reduction in the robustness
of the results, which becomes particularly problematic in searches for new physics, such as NDBD.
These searches require inference models to be run many thousands of times, often using synthetic
data to cross-check results, which exacerbates the computational burden.

To overcome these limitations, modern state-of-the-art Bayesian samplers, such as Hamiltonian
Monte Carlo (HMC) and Microcanonical Langevin Monte Carlo (MCLMC), offer a promising pathway.
These methods significantly enhance computational efficiency by leveraging the gradients of the
posterior distribution to guide the sampling process more effectively. Calculating these gradients
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is made possible through computational techniques and frameworks for automatic differentiation,
which have been instrumental in the machine learning community for training artificial intelligence
models. By incorporating gradient-based methods into the sampling process, these techniques
improve both the speed and precision of Bayesian Inference, making them ideal candidates for the
high-dimensional challenges faced in NDBD experiments.

The primary goal of this work is to develop, integrate, and deploy these gradient-based samplers
into physics analyses conducted within CUORE, CUPID, and LEGEND. The first major target
will be the application of these samplers to experimental searches for NDBD. Following this, the
focus will shift to detector background modeling, which typically spans a broader range of detected
energies and involves data selections different from those used in NDBD searches. Another analysis
avenue is to search for other rare phenomena, such as double-beta decay to excited nuclear states.
These phenomena introduce an additional layer of complexity, as they require the simultaneous
modeling of multiple detector channels, further expanding the dimensionality of the problem.

Moreover, this work will explore ways to further reduce the computational bottlenecks encoun-
tered in inference models by merging HMC and MCLMC samplers with domain-specific physical
input related to the experiments’ detection techniques, geometric layouts, and methodologies. While
these gradient-based algorithms offer great improvement potential over current methods, any model-
agnostic “black-box” sampling technique will inevitably saturate in computational performance.
These algorithms typically comprise an optimization stage, followed by an inference stage. The
optimization stage runs at lesser efficiency to self-optimize sampler hyperparameters, which improves
performance during the subsequent inference stage. Incorporation of domain-specific knowledge
can be used to pre-tune the optimization stage with greater fidelity, or even modify the sampling
algorithm altogether to include awareness of problem-specific particularities.

The improvements in computational efficiency and reduced overhead achieved through these
methods will enable the experiments to perform more detailed studies quantifying the impact of
systematic uncertainties on the discovery sensitivity to NDBD. Currently, performing such detailed
sensitivity profiling is too computationally expensive compared to existing techniques. The outcome
of such analyses could help inform the design and operational strategies of both current and future
experiments, ensuring that they maximize their potential to discover new physics.

Enhance and Benchmark the RESuM Model Despite its success, the RESuM model has
several limitations that we plan to address in our proposed research. A major bottleneck is the
relatively simple active learning algorithm currently employed. We aim to enhance the active learning
process by implementing the Expected Improvement method (EI) described in the Algorithms
proposed research (Sect. 3.1.2). Furthermore, we intend to benchmark RESuM against the other
proposed surrogate models in Sect. 3.1.2. This benchmarking study can inspire the development of
a more powerful Bayesian surrogate model that combines the strengths of different approaches, such
as Conditional Neural Processes, Bayesian manifold learning, and boundary-informed surrogates.
Given the prevalence of rare event challenges in neutrino experiments, this enhanced RESuM model
could be applied to various other challenges in neutrino physics, as described in the following two
subsections.

Precise Spectrum Modeling in KATRIN Modeling the end-point spectrum for tritium beta
decay is crucial for direct neutrino mass measurement, as different distortions of the end-point
spectrum could correspond to different neutrino mass. Currently, the KATRIN experiment employs
a fully-connected neural network to achieve this task. While effective, this simple network relies on
large training datasets and expensive numerical computations, while it only outputs a deterministic
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value instead of a quantity with its associated uncertainty.
The RESuM model leverages Gaussian Process (GP) regression as an efficient probabilistic

interpolator with less training data. This is achieved by its multi-fidelity nature which combines
high- and low-fidelity data sources, reducing computational demands while maintaining accuracy.
The two advantages of the RESuM model make it a perfect fit for modeling the end-point spectrum
in KATRIN: (1) it requires much less data to train, which could allow us to explore a broader range
of spectrum shape correction; (2) its ability to provide uncertainty estimates and enhance confidence
in predictions near the endpoint, where spectral precision is essential for neutrino mass sensitivity.
Therefore, we propose to adopt the RESuM model to KATRIN spectrum modeling to improve the
current end-point spectrum modeling.

Calibration Source Design in CUPID Designing calibration sources is crucial for 0νββ
experiments to understand detector response, which significantly impacts the 0νββ sensitivity. A
common challenge in calibration source design stems from the rare event nature of these experiments:
due to the ultra-pure environment required for 0νββ detection, a large number of calibration events
must be simulated to observe even a single calibration event in the signal region of interest. The
RESuM model effectively addresses this challenge, as demonstrated in the LEGEND experiment,
where it efficiently and robustly emulates rare event design metrics to guide detector design. Building
on this success, we propose to apply RESuM to CUPID’s calibration source design, particularly
to accelerate computationally intensive simulations such as phonon propagation throughout the
detector.

3.3 Quark-Gluon Plasma

3.3.1 Progress report

Bayesian inference for RHIC BES data During BUQ phase 1, open-source Bayesian analysis
tools from the JETSCAPE and BAND Collaborations were applied to pre-generated RHIC Beam
Energy Scan training data. Three types of Gaussian Process (GP) emulators were assessed using
these data, quantifying their accuracy via closure tests [94]. Three different MCMC implementations
were also assessed via closure tests. With optimal choices of the GP emulator and the UCB-developed
MCMC algorithm (pocoMC [95]), a systematic Bayesian inference study of QGP properties at finite
baryon densities was carried out using RHIC Beam Energy Scan data [96] (PRC Editor’s Suggestion).
This analysis provides robust constraints on QGP transport properties and (3+1)D relativistic
nuclear dynamics. A sensitivity analysis elucidated how experimental observables respond to specific
model parameters, providing new insight into phenomenological modeling of heavy-ion collisions.

Bayesian inference for jet quenching data Cost-efficient methods for Bayesian inference of jet
quenching data have been assessed using JETSCAPE simulations [97]. Preliminary characterization
of heteroskedastic GPs (Sect. 3.1.2) shows improved performance relative to traditional GPs.
The pocoMC algorithm [95] is likewise being explored using JETSCAPE jet quenching data, to
characterize its performance for Bayesian inference in this area.

Comprehensive Bayesian inference of heavy–ion data A unique, comprehensive Bayesian
inference study of QGP properties has been initiated, incorporating both soft and hard sector
observables. A key objective is to investigate the sensitivity of hard–sector observables to QGP
evolution, and assess whether hard–sector measurements can constrain bulk QGP properties; this is
a central question in the field, which has previously not been addressed systematically. The soft
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and hard sector evolution are generated using the JETSCAPE framework and integrated into a
Bayesian inference workflow. These calculations are computationally demanding, and multi-fidelity
approaches (Sect. 3.1.1) are being explored to enhance simulation efficiency and scalability.

Generative ML A generative model based on Gaussian Process Regression for nuclear matter
equations of state at high temperatures and densities is being developed [98]. It will be used to
generate large–scale training simulations for a new Bayesian inference analysis constraining the
QCD equation using heavy-ion data.

Software infrastructure Software packages and simulation data from Refs. [94,96,98] are publicly
available on Zenodo [99–101] to ensure long-term software stewardship and result reproducibility.

3.3.2 Proposed research

Deep heteroskedastic GP Bayesian inference of QGP dynamics requires running a Monte–Carlo
model framework (e.g. JETSCAPE [102]) with 103 − 107 calculations at each point θi in the model
parameter space. Due to the high computational cost of such calculations, an efficient surrogate
model, such as a pre–trained GP emulator, is needed to cover the model prior space efficiently.

A primary goal of this proposal is to explore model emulation approaches that optimize learning
performance at fixed numerical cost. Section 3.1.2 proposes a new approach to surrogate modeling,
the deep heteroskedastic GP, which is trained on simulations with varying statistical precision.
This approach complements our current effort based on surrogates with varying fidelity precision,
providing a comprehensive framework for Bayesian UQ of QGP emulation.

In BUQ Phase 2, we will first apply this approach to existing training datasets from the previous
JETSCAPE and RHIC BES projects. This will benchmark the deep heteroskedastic GP against
other open–source GP models, such as PCGP and PCSK from the BAND Collaboration [103,104]. It
will then be applied to a new set of training data, generated in the 23-dimensional model parameter
space, to study constraints on QGP properties using the bulk and high pT observables together
(Sect. 3.3.1) - a high-dimensional multi-messenger analysis.

Bayesian model selection with boundary-safe model emulation Bayesian model selection,
based on comparing statistical evidence between different models, is a powerful method to determine
whether the underlying theoretical model has redundant parameters. In QGP analyses with complex
models, it is important to determine whether specific model elements are relevant to the experimental
measurements [33]. For example, ideal fluid dynamics is the limit of viscous hydrodynamics for
zero shear and bulk viscosities. We define ideal hydrodynamics as the prior space boundary of full
hydrodynamics because the QGP viscosity must be non-negative.

A second model element to consider in this regard is color coherence in the parton shower.
JETSCAPE models color–coherence effects as a virtuality-dependent modification factor f(Q2) ∈
[0, 1] of the QGP transport coefficient q̂ [105], where Q2 is the parton virtuality. The color–incoherent
limit is defined at the boundary of the model parameter space, f(Q2) = 1. Since Bayesian QGP
analyses require fast surrogate GP models, trained GP emulators should be accurate at the model
prior–space boundary. However, as the dimension of the model parameter space increases, the model
prior space boundary may be outside the region covered by training data whose design points are
generated by Latin hypercube designs [106, 107]. This traditional design approach will therefore
behave poorly for boundary-informed surrogate modeling, as outlined in Sect. 3.1.2.

In BUQ Phase 2, we will apply the boundary-informed surrogate modeling framework proposed
in Sect. 3.1.2, to incorporate boundary information at certain physically significant limits (outlined
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above), to ensure accurate prediction and UQ at such limits. We will then explore the improvement
of such boundary-informed surrogates over existing GP emulators, and its impact on QGP Bayesian
analysis.

Data-driven theory uncertainty quantification in Bayesian inference Theoretical modeling
of QGP dynamics is multi-stage and complex [102]. Because the model incorporates physics at
multiple length scales, it is difficult to quantify its theory uncertainties. Bayesian inference analyses
that do not treat theoretical uncertainties systematically result in overfitting and bias in posterior
distributions of QGP properties. For example, Bayesian inference of bulk–sector observables exhibits
tensions in QGP bulk viscosity [33,108,109]. Tension is also observed in a jet quenching analysis
incorporating a broad transverse–momentum range [97].

In BUQ phase 2, we will apply a data-driven approach to quantitative theory UQ using the
following GP framework [110–112],

yexp(pT ) = ymodel(pT ,θ⋆) + δGP(pT ) + ε(pT ), (2)

where ymodel(pT ,θ⋆) is the model result at the optimal parameter set θ⋆, and ε(pT ) denotes the
experimental uncertainties. The term δGP(pT ) represents its theoretical uncertainty, which we model
by the GP δGP(pT ) ∼ GP{µ(pT ), k(pT,i, pT,j)}. The parametric forms of the mean and covariance
kernel of the GP require only qualitative guidance from the underlying theory, which reduces bias
from uncontrolled theory uncertainty estimation. The values of δGP(pT ) are constrained by the
model, providing a data-driven approach to theory UQ. We will first apply this framework to
a limited set of experimental observables, where tension between the model and data has been
observed [97] and assess the impact of the δGP(pT ) term on the posterior distribution of model
parameters. We will also analyze the functional dependence of δGP(pT ) to guide the theory.

AI/ML-based tools for high–dimensional distributions Our proposed project deals with
probability distributions with high dimension and of unknown analytic form. The standard
Scatterplot matrices [113] provide limited information about marginal parameter distributions
and their pairwise correlations. Analyzing non-trivial multi-variable correlations of the posterior
distribution beyond two dimensions is yet more challenging. However, the exploration of multi-
variable correlations hidden in the high-dimension posterior distribution of a QGP analysis can
provide crucial physics insight. For example, kinetic and strongly–coupled holographic theories
predict different temperature behavior for the ratio of QGP bulk and shear viscosity, ζ/η [114–116].
Analyzing this ratio as a function of temperature from the posterior distribution requires examining
the correlation of eight model parameters.

Normalizing Flows provide a powerful framework for learning complex distributions from
posterior samples [117]. In BUQ Phase 2, we will extend this approach to analyze O(20)-dimensional
distributions of QGP models. We will explore its performance and compare with different machine
learning approaches, such as the stochastic diffusion method. Once these ML models are trained,
they will serve as fast generators, enabling efficient exploration of the high-dimensional parameter
space. We will develop analysis tools to compare high-dimensional posterior distributions from
different MCMC algorithms, notably pocoMC vs. Micro-canonical LMC [118]. We will develop tools
for auto-detecting multivariable correlations in the posterior distributions and effective clustering
algorithms for multimodal distribution in high dimensions, which go beyond computing the standard
Kullback–Leibler divergence [119].
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AI/ML-based generative models for QGP: Due to the high computational cost of simulating
heavy-ion collisions, the development of AI/ML-based generative models for the QGP is an important
avenue of exploration. We will explore models which respect the physical constraints of collision
dynamics. The consequent reduction in computing time will enable physics studies that would
otherwise not be possible, such as a combined Bayesian inference analysis of low (soft) and high
momentum (hard) observables. This approach will likewise benefit experimental analyses that
require simulations for data corrections but are limited by computational costs. A key challenge
is the principled quantification of uncertainty in generative AI models, which must be resolved in
order to be deployed in Bayesian calibrations and experimental analysis. We will explore several
approaches to UQ, guided and validated by large-scale, realistic simulations. Once this UQ challenge
has been addressed, generative AI models can provide unique insights into heavy-ion collisions,
enabling precision physics analyses that were previously computationally prohibitive.

Iterative multi-messenger Bayesian analysis In Bayesian QGP analyses, theory uncertainties
vary widely among observables, and it is impractical to include all heavy-ion measurements in one
fully comprehensive Bayesian inference analysis. An iterative Bayesian analysis could reveal the
constraining power of specific experimental measurements on the model’s posterior distribution.
Iterative Bayesian QGP analysis requires the GP training described in Sect. 3.1.2 for new observables.
In BUQ Phase 2, we will explore Bayesian history matching [71,120] to optimize the model prior
range at every iteration, thereby reducing computational costs of additional simulations for new
observables. We will utilize a normalizing flow-based generator in Sect. 3.3.2 to first learn the
high-dimensional posterior distribution from previous iterations, then use it as the prior distribution
at a new iteration. Calculations will be based on the JETSCAPE framework. Building upon the
results in Ref. [97], we will sequentially include new observables from jet substructure, boson-tagged
jets, and a joint calibration using measurements from bulk and high-pT sectors together.

Collider monitoring Online change detection (Sect. 3.1.2) has promising applications for data
monitoring and quality assurance of collider experiments, e.g., for the ALICE Electromagnetic
Calorimeter [81], which records energy deposition data more than 30000 times per second in 17664
channels. To ensure high quality data, faulty electronics need to be promptly identified. We will
explore the application of the proposed iBCD method (Sect. 3.1.2) to identify such faulty channels
in real ALICE data. A distinct advantage of this approach over the more conventional methods
currently in use is that it provides efficient Bayesian UQ, enabling improved quantification of
data quality. This is particularly important to enable a rapid determination of which channels to
exclude for subsequent physics analysis and provide guidance to the running experiment about
which electronic channels require maintenance.

3.4 Radiological Mapping

3.4.1 Progress report

During BUQ Phase 1, we studied several relevant ML algorithms under the framework of BUQ for
application in radiological mapping.

1) Due to the high dimensionality of the radiation map image space, for example O(104)−O(106),
it can be computationally expensive to reconstruct the high-fidelity radiation image. Yet, real-time
image reconstruction is necessary for timely decision-making processes, especially if variations of the
images need to be repeatedly recomputed for UQ calculations. ML upscaling or “super-resolution”
algorithms were therefore of interest for accelerating radiation image reconstructions by performing
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the reconstruction at a lower fidelity and using a trained model to upscale the low-resolution image
to a higher fidelity.

We identified in literature and tested ML algorithms for the acceleration of radiation image recon-
struction via image upscaling. These include Convolutional Neutral Network based algorithms [121],
as well as Bayesian algorithms that can provide uncertainty quantification [122]. The performance
of these algorithms was compared, with insights gained of their suitability on radiation image
upscaling. In general we found that the ML algorithms reach but do not exceed the performance
of classical upscaling, e.g., by linear interpolation, likely because the level of fine-grained detail in
radiation images is low due to detector angular resolution—see Fig. 6. This work was presented as
an oral presentation at the 2024 IEEE NSS/MIC/RTSD conference [123], and we are preparing a
manuscript on our systematic comparisons of upscaling methods.

Figure 6: Different algorithms tested for radiation image upscaling on an example problem. CNN-ML:
a convolutional neutral network based ML model. AGPR, GPRSR: Gaussian Process Regression
based models. Constant, linear interpolation: non-ML algorithms. The percentage deviation
maps and SSIM (structural similarity index measure) are used to quantify the model upscaling
performance.

2) The reconstructed radiation image can have missing regions due to various artifacts in the
image domain (e.g., a ground elevation model) prior to reconstruction. Such missing regions create
ridges of artificially-high radiation intensities, since activity that would normally be attributed to
those missing regions gets pushed to nearby pixels/voxels instead. ML algorithms can be used to fill
in (i.e., inpaint) these missing ground surface regions with estimated values, and provide uncertainty
estimates on the inpainted values.

We have identified and tested a Bayesian ML model, the Deep Gaussian Markov Random Field
(DGMRF) [124] from Section 3.1.2, that can be used for radiation image inpainting. We developed
synthetic ground height maps, artificially removed sections of the maps to simulate measurement
artifacts, and then used the DGMRF model to inpaint the missing values. The DGMRF model
produced promising performance, quantified by high SSIM scores with respect to the true height
map values, and it also provides uncertainty on the inpainted values—see Fig. 7.

3) An uncertainty map provides critical information that complements the radiation intensity
map. The most widely-deployed radiation image reconstruction algorithm, Maximum Likelihood
Expectation Maximization (ML-EM), provides no uncertainty information of the radiation image
data by default. The exact error propagation of ML-EM, known as Iterative Bayesian Unfolding
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Figure 7: DGMRF algorithm for radiation image inpainting

(IBU) [125], is extremely computationally expensive, scaling as (at least) N5, where N is the number
of image pixels/voxels. Exact UQ via IBU is therefore unsuitable for real-time UQ of radiation
images, and fast approximate methods are required instead.

We have tested a Markov Chain Monte Carlo MCMC sampler developed by the UC Berkeley
sub-group, Microcanonical Langevin Monte Carlo (MCLMC) [126,127], with a focus on evaluation
of computation time and reconstruction accuracy. The MCLMC is able to reconstruct a radiation
intensity and uncertainty map in less than 20 s for dimensionality N ∼ 104, which significantly
outperforms other MCMC samplers—see Fig. 8. In particular the MCLMC vastly improves upon
the state-of-the-art Hamiltonian Monte Carlo (HMC) times of ∼1 hour found prior to this project.
The radiation map and its associated uncertainty map agrees well with expected correct results.
Such performance makes online radiation map reconstruction with uncertainty values feasible. We
have organized the code in a online repository to make it easy to use and readily available to be
interfaced with existing LBNL radiation map data processing tools. Finally, we are preparing a
manuscript comparing the performance of these various UQ methods, MCMC-based and otherwise.

Figure 8: Overview of the MCLMC radiation image UQ results. Left: the synthetic ground truth
distribution. Upper center and upper right: the ML-EM reconstruction result used as the mean and
standard deviation of a Gaussian prior for the MCLMC. Lower center and lower right: the mean
and standard deviation (UQ estimate) from the MCLMC.
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3.4.2 Proposed research

Operationalizing MCLMC uncertainty quantification In phase 2 of this project, we intend
to further operationalize the MCLMC UQ method developed in phase 1, in particular by deploying
it on a live radiation mapping system such as LBNL’s NG-LAMP [128], and demonstrating its
real-time usage. Consideration will be given to computational performance, power usage, and how
to present the UQ results to the system operator in an intuitive and informative way. One possibility
for a demonstration of this technology is to leverage an upcoming multi-lab, multi-project, wide-area
distributed sources measurement campaign that is being planned for 2025 or 2026 under the auspices
of DOE NNSA NA-22. The fast but accurate nature of the MCLMC UQ results will also enable
path planning methods based on the UQ map, e.g., moving in the direction of the largest relative
uncertainty pixel. Operationalizing MCLMC will therefore benefit several other LBNL radiation
mapping projects that are increasingly focused on real-time autonomous mapping.

Low-dose radiation imaging and data sufficiency A major outstanding question in radiation
mapping is: how much data is necessary for a “good quality” reconstruction? Image quality is
generally improved with more data, but collecting more data requires time and battery life and
increases dose to human operators. For example, [3, Fig. 14] by co-PI Vavrek et al. shows the effect
of raster line spacing (and therefore total measurement time) on image quality. In this particular
example, the image quality metrics suggest that the original measurement was far above some
abstract “data sufficiency criterion” and that a measurement half as long would have been sufficient.

However, data sufficiency for radiation imaging remains more an art than a science. As such, in
phase 2, we will explore Bayesian/ML methods for determining data sufficiency and thus enabling
efficient and low-dose radiation imaging. We will first investigate whether there exist any (possibly)
Bayesian methods for quantifying data sufficiency, looking in particular at the system matrix in the
radiation mapping linear model.

Then, for imaging cases near- or below-criterion, we will investigate methods to produce a “good
quality” image with less-than-sufficient data. We will look to the wealth of ML image de-noising
techniques already developed in the medical imaging domain (e.g. for PET and SPECT imaging)
to retain high image quality while reducing dose to the patient. In radiation mapping by analogy
such techniques could allow human and/or robotic detector operators to move faster through an
area while retaining high image quality, reducing dose and/or increasing coverage. The GPP and
Bayesian optimization algorithms of the Duke sub-group provide a useful starting point; there are
other methods of interest such as the Reader bootstrap [129]. Matrix approximation techniques
such as randomized singular value decomposition may also allow for the learning of low-dimensional
structure in the model system matrix, which can be leveraged in de-noising. Finally, we may leverage
our phase 1 work by converting the image upscaling framework to an image de-noising framework,
i.e., training the ML model to go from a reconstructed image to the ground truth image rather than
from a low-fidelity to a high-fidelity reconstructed image.
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[103] M. Plumlee, O. Sürer, S. M. Wild, and M. Y.-H. Chan, “surmise 0.2.1 users manual,” Tech.
Rep. Version 0.2.1, NAISE, 2023. https://surmise.readthedocs.io.

[104] K. Beyer et al., “BANDFramework: An open-source framework for Bayesian analysis of
nuclear dynamics,” Tech. Rep. Version 0.3.0, 2023.
https://github.com/bandframework/bandframework.

[105] JETSCAPE Collaboration, A. Kumar et al., “Inclusive jet and hadron suppression in a
multistage approach,” Phys. Rev. C 107 no. 3, (2023) 034911, arXiv:2204.01163 [hep-ph].

[106] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code,”
Technometrics 21 no. 2, (1979) 239–245. http://www.jstor.org/stable/1268522.

29

http://arxiv.org/abs/2410.03873
https://arxiv.org/abs/2107.11462
http://dx.doi.org/10.1140/epjc/s10052-018-6079-3
http://dx.doi.org/10.1140/epjc/s10052-018-6079-3
https://doi.org/10.1140%2Fepjc%2Fs10052-018-6079-3
http://dx.doi.org/10.1103/PhysRevC.110.044904
http://arxiv.org/abs/2405.12019
http://arxiv.org/abs/2405.12019
http://dx.doi.org/10.21105/joss.04634
http://dx.doi.org/10.21105/joss.04634
http://arxiv.org/abs/2207.05660
http://dx.doi.org/10.1103/PhysRevC.110.054905
http://arxiv.org/abs/2408.00537
http://arxiv.org/abs/2408.08247
http://arxiv.org/abs/2410.22160
https://doi.org/10.5281/zenodo.12807892
https://doi.org/10.5281/zenodo.12807556
https://doi.org/10.5281/zenodo.14008389
http://arxiv.org/abs/1903.07706
https://surmise.readthedocs.io
https://github.com/bandframework/bandframework
http://dx.doi.org/10.1103/PhysRevC.107.034911
http://arxiv.org/abs/2204.01163
http://www.jstor.org/stable/1268522


[107] R. L. Iman, J. M. Davenport, and D. K. Zeigler, “Latin hypercube sampling (program user’s
guide). [lhc, in fortran],” tech. rep., Sandia Labs., Albuquerque, NM (USA), 01, 1980.
https://www.osti.gov/biblio/5571631.

[108] G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, “Bayesian analysis of heavy ion
collisions with the heavy ion computational framework Trajectum,” Phys. Rev. C 103 no. 5,
(2021) 054909, arXiv:2010.15134 [nucl-th].
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Appendix 2: Facilities

LBNL and UCB

The National Energy Research Scientific Computing Center (NERSC) at LBNL hosts the Perlmutter
supercomputer. Perlmutter is an HPE Cray system based on the Shasta platform. The HPE
Cray Shasta system integrates NVIDIA A100 GPUs, AMD “Milan” EPYC CPUs, a novel HPE
Slingshot high-speed network, and a 35-petabyte FLASH scratch file system. It comprises of 3,072
CPU-only and 1,792 GPU-accelerated nodes. The PIs will apply for a NERSC computing and
storage allocation to cover those aspects of the project that are best provided by NERSC computing.

Additional computing resources are provided on the Berkeley campus HPC cluster (Savio) for
UC Berkeley faculty. LBNL also hosts the Lawrencium cluster [71], a general-purpose HPC facility
comprising multiple generations of linux-based multi-core processors plus associated infrastructure,
most notably Infiniband interconnects. The architecture of this facility maps well onto some of the
projects in this proposal, in particular the large-scale computing needs of Bayesian Inference for
Quark-Gluon Plasma studies.

Duke University:

The Duke University Department of Statistical Science maintains a near state of the art network
of approximately fifty single-and dual-processor x86 and x86-64-based Linux workstations, ap-
proximately a dozen Windows PCs in a Samba network environment, and a range of networked
monochrome and color Postscript printers for its faculty, Ph.D. students, and staff. Rack-mounted
servers offer file, e-mail, web, and authentication service. A RAID storage server facility offers
something under one terabyte of disk capacity, backed up daily to an LTO tape changer. The
software environment includes a wide array of scientific programming tools, including the GNU
suite of libraries, compilers, and development tools, a range of scientific and statistical computing
environments such as Matlab, Maple, Mathematica, S-Plus, R, OpenBUGS, etc. An MPI-based
parallel computing environment is provided that is consistent with the HPC environment at Duke’s
Computational Science, Engineering and Medicine (CSEM) facility, to aid investigators in prototyp-
ing and debugging parallel computer code. The computing environment is maintained by a full-time
systems manager and systems programmer.

The backbone and other university-level infrastructure needs of the University are maintained
by a central IT organization, the Office of Information Technology (OIT). OIT is responsible for the
operation, testing, support, and engineering of the campus-wide data, voice, and video communica-
tions infrastructure. This includes the design and subsequent implementation of structured wiring
and switching systems, enterprise-level servers, including Domain Name Server (DNS) and Dynamic
Host Configuration Protocol (DHCP) servers, routing systems, and wireless systems.

Duke University’s high-speed backbone, DukeNet, provides researchers, staff, faculty and students
with a robust, redundant conduit for data. The backbone consists of Cisco routers with redundant
10 gigabit ethernet links. Most buildings on campus are wired with Category 5 cabling and have
10M/100M Ethernet ports supplied to each desktop. Servers and high speed research workstations
can be provided with gigabit or ten gigabit ethernet ports as needed. Building networks connect to
the backbone via dual gigabit or 10 gigabit ethernet uplinks.

The Duke Shared Cluster Resource (DSCR) facility maintains a shared computational cluster
facility of over 600 machines (1152 processors) to which we have access. The processors range from
2.8GHz to 3.6GHz. While the cluster must be shared by the entire community at Duke, it provides
a useful resource for computational science.
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The University also maintains a campus-wide AFS file system infrastructure with terabytes of
storage; a campus-wide electronic mail infrastructure supporting over 35,000 mailboxes and handling
in excess of a million messages a day; a server-based file service, authentication services; directory
services; web service; and name service and other network services.

Wayne State University

HPC Grid: The current HPC Grid consists of 502 servers running CentOS 7 and OpenHPC
components with approximately 9,500 cores and 70 GPUs of various vintages. It has grown over
the years based upon funding from multiple sources such as grants, investments by C&IT, and
investments by colleges and the office of the Vice President for Research. As such, it has a broad
range of configurations. The challenge of managing this complex environment is made possible by
software tools such as xCAT (installation and configuration), PBSPro (scheduling) and Xymon and
BigBrother (monitoring). These same tools will simplify and speed installation of the new cluster.
Our HPC services are documented in detail at https://tech.wayne.edu/hpc. For example, a complete
list of nodes with their associated GPU cards can be found at https://tech.wayne.edu/hpc/nodes.

Networking: C&IT operates a campus network with a dual 10G backbone (soon to be upgraded
to 40G or 100G depending upon bids) with the main hub at the central computing facility and a
secondary hub located on the west end of campus for redundancy. Connections to buildings are
currently 1G with upgrades planned for 10G and higher where needed. WSU is a member of the
Merit Network which provides connectivity to the Internet and to Internet2. WSU also has a 10G
Science DMZ to four locations on campus with a link to Starlight in Chicago for access to national
and global networks such as ESNet and LHCOne.

UCSD:

San Diego Supercomputer Center: SDSC hosts an array of five substantial High-Performance
Computing (HPC) systems, including one specifically optimized for modern Machine Learning,
utilizing Intel/Habana processors. Of these, the Expanse system—a Dell cluster initiated in
2020—stands out with its 13 SDSC Scalable Compute Units (SSCUs). This configuration includes
56 standard nodes powered by AMD EPYC (Rome) processors, alongside four GPU nodes equipped
with Nvidia V100 GPUs, all interconnected through a 100 GB/s HDR InfiniBand. Expanse is also
integrated with the Open Science Grid for high-throughput computing, supporting vast numbers of
single-core jobs, and features a low-latency Mellanox HDR InfiniBand network, ideal for medium-scale
parallel tasks requiring several thousand cores.

As an SDSC Faculty Fellow, the PI is entitled to 5,000 NVIDIA A10 equivalent GPU computing
hours annually over three years, extending until 2027. This resource allocation supports escalating
research demands, and the SDSC staff offers collaborative and intellectual engagement opportunities.
Additionally, the PI benefits from 100 TB of storage space provided by SDSC, facilitating data
storage and open data sharing initiatives.
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Appendix 3: Equipment

No additional equipment will be required for this project.
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Appendix 4: Data Management Plan

Data sources: The research supported by this proposal entails the application of novel analysis
methods to experimental data and model calculations in several topical areas within the NP research
portfolio. These data are generated primarily by large experimental and theoretical collaborations.
Some relevant data have been published in refereed journals and are publicly available, and their
usage does not require special consideration.

The PIs of this proposal include NP Domain Scientists who collaborate on these experiments,
and their activities within this project require access to raw data and detailed experimental and
calculational information that is unavailable to researchers who are not collaboration members. Such
an approach is essential for this project, which cannot be carried out based solely on publicly available
data and the high-level information provided in publications. However, in each collaboration, the
usage and publication of data is governed by formal rules which specify how such internal analyses
can be presented in conferences, public talks, and publications. The PIs will establish agreements
with each collaboration and project whose data we will utilize, to ensure full conformity to their
rules of data usage. These agreements will likewise conform to all DOE requirements concerning
the usage of unpublished data. Publication of analyses based on such data will be handled on a
case-by-case basis, consistent with these agreements.

Data Management: Effective data management enables developers and end users to quickly and
efficiently read in simulation and experimental data, analyze them, and store the results. Since there
are multiple sources of data that will be used in this project, Data Management requires a hybrid
approach. For experiment-internal data, the data management approach of each collaboration will
be followed. For multi-experiment analysis of published data, existing data management solutions
that are in widespread usage in the community, such as HEPData [130] and Zenodo [131], will be
applied.

Computing resources: As noted above, access to detailed experimental and calculational
information is required for effective utilization of raw data from large experimental collaborations.
This may necessitate analysing data in the native environment of each experiment, which requires
access by participants in this project to the the computing facilities of the experiments themselves.
Large physics experiments commonly have mechanisms that enable joint work with non-collaborators
on specific technical projects, which grant the non-collaborators access to collaboration resources.
We will utilize these mechanisms as needed. Several PIs of this proposal play leading roles in the
relevant experiments, and we expect that such arrangements will not be burdensome to establish.

Data Archiving and Distribution: Data will be archived and made available publicly in
accordance with best scientific practices and with the specific objective that all published results
should be reproducible. To facilitate this objective, datasets generated and managed by this project
will be registered through OSTI’s DOE Data ID Service and made available through NERSC data
portals, or equivalent. Data generated by the project and used in publications, including any reduced
data, the results of inference algorithms, and all data used to generate charts and graphs, will be
archived by the authors and made available publicly.

Software: The goal of this proposal is to develop general solutions that are broadly applicable
to multiple projects. However, the NP projects in the proposal developed independently, using
different computing languages and tool sets. This barrier must be overcome for the project to be
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successful, and new software interfaces will therefore have to be developed. Interfaces between C++,
Python, and Julia will be provided. This will not only serve the NP projects in this proposal but
also applications in the wider community.

Similarly, usage of high performance computing clusters requires additional interfaces for the
new tools. Containers such as Singularity, Docker, and the NERSC-specific Shifter environment will
be implemented. Conflicts may arise from parallelization, for instance when experiment native code
uses the same parallelization methods as the Bayesian UQ and they interfere on the computing
cluster. Collaboration with computer scientists will address these issues and provide solutions for
the NP projects as well as for the wider community.

Standard software management tools such as GitHub will be employed.

Publications and Presentations: Publications and presentations will be reviewed before release
in accordance with requirements established by DOE and by the home institutions of the authors.
Publications and presentations will be archived by the project in PDF format as well as a source
format, e.g., LaTeX, Word or Powerpoint. Publications and presentations will also be archived and
made available through OSTI Open Archives Initiative and through the authors’ home institutions.
Pre-prints will be archived through http://arxiv.org.
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Appendix 5: Promoting Inclusive and Equitable Research (PIER)
Plan

This proposal is a multi-institutional collaboration between Lawrence Berkeley National Laboratory,
Duke University, Wayne State University, the University of California at Berkeley, and the University
of California at San Diego. Each institution has a strong commitment to the principles of IDEA
(Inclusion, Diversity, Equity and Accountability) and has integrated them fully into their work
culture and managerial practices.

Collaboration environment

The proposed collaborative effort will involve personnel with a very wide range of career experience
and professional level: career faculty and laboratory career staff, term staff, postdocs, graduate
students, and undergraduates. Much of the daily research work will be carried out by collaborators
who do not have a permanent position, and whose career needs must be taken carefully into account
to ensure their future success. Giving positions of responsibility to the early-career collaborators
and promoting their work to the community provides the foundation for a welcoming, constructive
collaboration culture.

The proposed project is highly multi-disciplinary, spanning multiple sub-fields of Nuclear Physics
as well as areas of Data Science. Members of the collaboration therefore come from different
communities with different expertise, culture, and modes of working. As noted in the proposal,
the essential motivation to carry out such a multi-disciplinary project is to find and develop new
connections between these sub-areas: the whole may then be greater than the sum of its parts.
However, building such connections will require deliberate effort. Regular meetings (currently on a
monthly basis) are held to discuss research progress. These meetings are chaired by early career
scientists and provide them opportunities to speak on their research in a low-pressure, propitious
environment, thereby preparing them for future opportunities to present publicly.

While postdocs and graduate students are often focused largely on their specific research,
participation in this project will require early-career researchers to take a broader view of physics
and data science than they would otherwise have, which is beneficial for their education and next
career steps. However, many collaborating postdocs and students will in practice be dividing their
time between an NP experiment and this project. The mentoring of a postdoc or student in such a
circumstance has the additional challenge of ensuring that both projects get the appropriate level
of attention, and that the student or postdoc is not pulled into too large and time-consuming a
project in one area at the expense of the other. It is the collaboration’s joint responsibility to
ensure that postdocs and students have sufficient space and time to carry out their research, without
feeling undue pressure from internal competition (this, unfortunately, happens in large experimental
collaborations). Finding the right balance for each early-career researcher in the collaboration will
require care and attention by collaboration members on a case-by-case basis; there is no general
approach that works for everyone.

The collaboration is also multi-institutional, comprising one National Laboratory (LBNL) and
four universities (Duke, Wayne State, UC San Diego, UC Berkeley). This provides the opportunities
for extended research visits of early-career collaborators to different institutions, which will likewise
broaden their horizons.
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Leadership training

Leadership training is best done by providing the opportunity to lead. The career stage at which
this opportunity is most crucial is at the level of postdoc and term staff, where an early-career
person has developed experience and judgment and is looking for her next career step in academia or
industry with larger leadership responsibility. There are several opportunities for leadership in the
collaboration: organizing and running regular collaboration meetings; giving prominent conference
talks on behalf of the collaboration; being a lead or corresponding author on a collaboration paper;
serving on the editorial committee for other papers, etc. Collaborators at a vulnerable career stage
will be given the highest priority for these leadership tasks, according to their interests and needs.

Formal Mentoring:

Each of our institutions provides a formal mentoring program and other resources for students and
postdocs. We describe them here:

• LBNL/UCB: LBNL provides a Physical Sciences Area (PSA) mentoring program which
partners a mentee with a mentor from a different field, to provide a perspective that is different
than their group and supervisory chain. This program is not restricted to early-career mentees.
The Berkeley Lab Postdoc Association at LBNL and Berkeley Postdoctoral Association at
UCB offer the opportunity for postdocs to meet mentors and peers. We will encourage the
postdocs to connect with both the PSA mentoring program as well as their respective postdoc
associations. More senior members of the project are likewise encouraged to participate in
the PSA Mentoring program. The LBNL co-PIs in this proposal have mentored postdoctoral
fellows in grant writing and involved them in proposal reviews (with permission from DOE
NP), so that they are more prepared for the typical tasks in their next career step.

• Duke: Duke has numerous formal mentoring programs geared towards training graduate
students and preparing them for future endeavors. The Emerging Leaders Institute provides
an 8-week program that helps graduate students and postdocs develop competencies in
communication, self-awareness, professional adaptability, interdisciplinary teamwork, and
leadership, leading to a certificate of completion. Duke offers a Professional Development
Series, which features one-off talks, workshops, and events that help students identify and
develop transferable skills to prepare them for careers in academia, industry, government,
nonprofit, and entrepreneurship. The Graduate School at Duke also provides writing support
such as academic courses, writing spaces, writing consultations, online resources, and additional
support for international students.

• Wayne State: The postdoctoral fellow will get training in the professional skills that will
aid them in succeeding in their future endeavors and reaching their full potential. The WSU
Individual Development Plan (IDP) is an ideal framework to assist the postdoc scholars in
developing their career plans and trajectories. By taking advantage of the Graduate and
Postdoctoral Professional Development (GPPD) seminar series and the Grant Writing Seminars,
the postdoc fellows will improve their abstract writing, job search, and presentation skills.
The professional development programs such as Academic Leadership Academy, Broadening
Experience in Scientific Training, reBUILDetroit, and the Postdoctoral to Faculty Transition
Fellowship program can further boost their leaderships in the fields.

• UCSD: UCSD offers a variety of training resources for postdocs to enhance their professional
development and prepare them for future career. The Office of Postdoctoral Scholar Affairs
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provides essential training, including a New Postdoc Orientation, Introduction to the Ethical
Challenges of Research series, and the EPIC Bootcamp, which helps postdocs understand their
role and succeed during their training at UCSD and beyond. Additionally, UCSD Extension
offers certificate programs, such as the grAdvantage Certificate in Leadership and Teamwork,
Project Management Certificate to equip postdocs with skills in leadership, teamwork, project
management, and more. Furthermore, the UCSD Postdoctoral Association offers training and
volunteer opportunities, including The Postdoc Survival Guide, events calendar, and volunteer
opportunities with local non-profits. These resources aim to support postdocs in their career
development and provide them with the skills and knowledge necessary to succeed in their
chosen field.

Recruitment of Project Personnel

Given the multi-disciplinary nature of the project, postdocs will be recruited from several different
areas.

To recruit physics-oriented postdocs, the most effective job posting is on the INSPIRE job ad
board. Large experimental collaborations regular send out job announcements to their membership,
and we will likewise utilize that mechanism.

This approach to posting job ads is effective in recruiting candidates who are already working in
an NP sub-area. However, the project also includes a strong data-science component, and for some
postdoc positions a different approach to recruitment is needed. We will broadcast such positions
on a variety of data science job boards, including MathJobs, the IMS Job Board, the ASA JobWeb,
and the ISBA Job Board.

To ensure that our recruitment effort has reached under-represented populations, we will likewise
post job ads to Under-Represented Minority (URM) serving fora connected to physics and data
science. These include the National Society of Hispanic Physicists, the National Society of Black
Physicists, the Society of Advancement of Chicanos and Native Americans in Science, and the
National Society for Black Engineers. The Nuclear Science Division at LBNL will pay for the
expenses for the advertisements in these URM publications.

As part of the postdoc recruitment process, we will also contact other colleagues to aid in
identifying potential candidates from under-represented groups, and the encourage such candidates
to apply.

For graduate student recruitment, UC Berkeley, UC San Diego, and Duke University are
university members of the GEM Consortium with the access to an impressive pool of under-
represented STEM candidates. LBNL hosts GEM fellows in performing their research, and its
Workforce Development & Education department will provide the required administrative support,
while the research programs at LBNL will provide the financial support.

To build a diverse workforce pipeline in Nuclear Physics, the Nuclear Science Division at LBNL
leads the GREAT-NS program, which was funded by DOE NP to provide undergraduate students
at Minority Serving Institutions (MSIs) with traineeship opportunities in nuclear physics. PI Poon
of this proposal is also co-PI in the GREAT-NS program, mentoring a veteran from a local MSI.
We intend to work with the GREAT-NS program and the WD&E department to benefit more
undergraduate students for this proposal.

The Physics Department at the University of California, Berkeley has an active program for
“transfer” students — undergraduates who were transferred from community colleges — including
research opportunities for these students. A similar program supported by the Patricia & Christopher
Weil Family Foundation also exist at UC San Diego. We intend to recruit suitable candidates from this
pool of undergraduate students, which consists of mostly first-generation and/or minority students.
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Programs supported by the Department of Physics, such as the Berkeley Physics Undergraduate
Research Scholarship and the Physics Innovators Initiative, provide financial support for students
working with faculty members during the academic year and the summer months. In addition, the
MPS Scholars program in the College of Letters and Sciences provides support to the students doing
research in STEM fields with the focus on under-represented populations. PIs on this proposal will
continue to participate in these programs; postdocs will be encourage to mentor undergraduates on
the specific research projects.

The Co-PI at Wayne State (Shen) commits to actively recruit and support under-represented
minority and first-generation graduate and undergraduate students. Wayne State University has a
large base of minority students. About 35%/28% of its undergraduates/graduates are minorities,
and 16% of the undergraduate and graduate students are African-American, according to the 21-22
Wayne State Fact book. The Co-PIs will formulate summer research projects on Machine Learning
to engage more undergraduate students, especially those from the programs at Wayne State targeted
at improving retention, namely the Wayne State Warrior Vision and Impact Program (VIP) and
Academic Pathways to EXcellence (APEX) program.

The Co-PI at Duke University (Mak) has a strong track record of mentoring students from
diverse backgrounds and experiences, and will continue to actively do so for this project. Two of
Mak’s seven current PhD students are women, and five of Mak’s ten undergraduate thesis advisees
are women. Mak is also on the leadership board of the Institute of Mathematical Statistics (IMS)
New Researchers Group, which aims to provide career development opportunities for early-career
statisticians, particularly those from underrepresented backgrounds and institutions. Mak will
leverage these connections to further promote diversity, equity and inclusion, providing students
from underrepresented backgrounds and institutions with ample research training and opportunities.
The students mentored in this project will also learn and benefit from thinking from these diverse
perspectives.

The co-PI at UC San Diego (Li), who holds a joint appointment in the Halıcıoğlu Data Science
Institute and Department of Physics, has demonstrated excellence in mentoring students at the
intersection of AI/ML research and physics analysis, with particular success supporting students
from underrepresented groups. Notable achievements include:

• Mentoring three PhD students (including one LGBTQI+ woman) and 10 undergraduate
researchers from diverse backgrounds

• Facilitating the public release of AI-ready particle physics data and integrated it into data
science education, engaging over 160 data science students in group projects and in-class
particle identification challenges. Remarkably, these students mastered complex physics
analysis despite having no prior physics background.

• establishing the Germanium Machine Learning (GeM) group within the LEGEND collaboration.
The GeM group features a comprehensive training pipeline that enables physics students
with no prior AI/ML experience to develop expertise in the field. To date, the group has
successfully launched 15 AI/ML projects within LEGEND by training international students
and postdocs.
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