FRIB Nb₃Sn ECR ion source magnet: Schedule, Cost, and Progress monthly report

Tengming Shen for the Supercon team Lawrence Berkeley National Laboratory Feb 2025 report

2025/02/24

- FRIB: Yoonhyuck Choi, Junwei Guo, Xiaoji Du, Dalu Zhang, Ting Xu, Guillaume Machicoane, Tomofumi Maruta, Jie Wei
- LBNL: Tengming Shen, Ye Yang, Philip Mallon, Ray Hafalia, Lianrong Xi, Mariusz Juchno, Paolo Ferracin, Soren Prestemon

The Indico site where the meeting slides can be downloaded: https://conferences.lbl.gov/event/2081/

Access key: FRIB

Past meetings slides are available at https://conferences.lbl.gov/category/109/

CO ENERGY Stores

- Complete preparation of prototype coil for heat treatment:
 - Completed heat treatment of prototype coil completed.
- Mirror magnet assembly component fabrication. Drawing released.
 All items received except the load pad, and the key and shim assemblies.

Prototype coil winding completed on 11/21/2024.

Preparation of prototype coil for heat treatment – tooling modifications

Lawrence Berkeley National Laboratory

Apply lessons learned during the practice coil

Reaction baseplate – add 12 setscrews holes.

Reaction baseplate cavity width – enlarged by 0.010".

Apply Boron Nitride

Preparation of prototype coil for heat treatment – leading into fixture and close the fixture

Lawrence Berkeley National Laboratory

Fully closed.

Coil is electrically open to the fixture.

Coil resistance unchanged before and after closing the fixture.

A 0.002" gap between Reaction liner and OD block.

Lessons learned

Lawrence Berkeley National La

Difficult to remove the pole gap spacers.

Heat treatment completed on 02/10/2025

Lawrence Berkeley National Laboratory

- Three barrel samples (round strands) for $I_c(B)$ measurements.
- Extracted strands for RRR measurements.

DENERSY Solerce

Removing baseplate was a smooth process with jackscrews and additional clearance.

Observing the reacted prototype coil: Inner diameter wall and axial gap

Lawrence Berkeley National Laboratory

Axial gap between two half poles reduced to 200 micron.

Observing the reacted prototype coil: Side wall

Lawrence Berkeley National Laboratory

FRIB

Other observations

Lawrence Berkeley National Laboratory

Gaps developed between coil and pole tips

Inner diameter side

Outer diameter side

Other observations

Preparing inner diameter side for impregnation

Lawrence Berkeley National Laboratory

FRIB

This step went well

Coil has been flipped and now being prepared for impregnation – at the critical step of splicing

Coil resistance (ohm)	6.4
Coil to LE endshoe (k-ohm)	10
Coil to RE endshoe (k-ohm)	open
Coil to half pole island (LE) (M-ohm)	20
Coil to half pole island (RE) (M-ohm)	42

Loading assembly in production

Philip Mallon, Ryan Norris, Lianrong Xu et al.

- Shell, upper yoke and bottom yoke received at LBNL.
- SS end plates, pushers, spacers are released for fabrication received at LBNL.

Loading assembly in production

.....

SU-1018-5000

LABORATORY

MIRROR MAGNET ASSEMBL'

SU5414

Philip Mallon, Ryan Norris, Lianrong Xu et al.

Drawings released for fab: 1)
 load pad, 2) axial rods, 3) key
 and shim assemblies. Axial
 rods arrived.

- $\odot~$ Impregnate the prototype coil. Complete coil fabrication.
- $\odot~$ Prepare mirror magnet assembly.
- Prepare mirror magnet cold testing.

Conductor started to arrive.

Lawrence Berkeley National Laboratory

Info from Xiaoji.

We will communicate with our production team to ensure that this issue is prevented in the futur

Please let me know if you have any questions.

SPL_ID	LENGTH	DIAM_POINTS	DIAM_AVG	DIAM_STDV
23541-1	668 m	8771	0.7001 mm	0.0003 mm
23541-2	1662 m	21825	0.7001 mm	0.0004 mm
23541-3	2925 m	38397	0.7001 mm	0.0003 mm
23541-4	2585 m	33938	0.7002 mm	0.0002 mm
23541-5	689 m	9045	0.6999 mm	0.0004 mm
23541-6	901 m	11827	0.6998 mm	0.0002 mm
23541-7	714 m	9375	0.6999 mm	0.0004 mm
23541-8	832 m	10921	0.7000 mm	0.0004 mm

23541-1 laser micrometer results

Piece #	1 Good	Length 668.1	m	# Points 8771	
Piece Statistics					
	Average	Deviation	Minimum	Maximum	
Diameter	0.70011 mm	0.00025 mm	0.69969 mm	0.70066 mm	

23541-2 laser micrometer results

and the second					A CONTRACTOR OF THE	
Piece #	2	Good	Length	1662.3 m	# Points	21825
and the second second						

14 unit pieces of (>650 m unit piece length) received. 9.1 km out of 39 km.

WO#	Length	Round down	Diameter	Net Weight
23541-1	668m	650*1+ <mark>18</mark>	0.84mm at inner terminal	2.5kg
23541-2	1662m	650*2+ <mark>362</mark>	<mark>0.88mm at inner terminal</mark>	5.7kg
23541-3	2925m	650*4+ <mark>325</mark>	0.7mm	10kg
23541-4	2585m	650*3+ <mark>635</mark>	0.7mm	8.9kg
23541-5	689m	650*1+ <mark>39</mark>	0.7mm	2.5kg
23541-6	901m	650*1+ <mark>251</mark>	0.7mm	3.2kg
23541-7	714m	650*1+ <mark>64</mark>	0.7mm	2.5kg
23541-8	832m	650*1+ <mark>182</mark>	0.7mm	2.9kg
Total	10976m	9100+ <mark>1876</mark>		

MOVE TICKET UKER Bruker OST 01/03/2025 5149RD00121 MSULFRI 0.7 mm 60/91 stack RRP STOCK C SCRA BILLET 2925 meters 11.7kg TARE WT .: 1.7kg NETW

