Rare Event Surrogate Model (RESuM) for Physics Detector Design

Ann-Kathrin Schuetz

Motivation - Physics Design Optimization

utrons pture on Ge isotope pture on Ar isotope	
pture on H iso	tope
001 μs	
= 0 = 0 : 0 341623.2 MeV	Mater tank
	_
5000	6000

Credits to M. Neuberge

- **LEGEND**, proposed ton-scale experiment searching for ultra-rare neutrinoless double beta decay (a Nobel-prize-level discovery).
- Must suppress extremely rare backgrounds from cosmic muon-induced neutrons.
- Simulations are **expensive**, signal is vanishingly rare.
- Optimizing designs under such rare-event statistics is intractable.
- Need a rare event surrogate model for efficient, variance-aware optimization.

Simulation run:

N events with

- design parameter $\boldsymbol{\theta}_k$ and
- event-specific parameter $\boldsymbol{\phi}_{ik}$ (drawn from $g(\boldsymbol{\phi})$)

design parameters θ_k

- absorber radius
- absorber thickness
- •

Per simulation run: θ_k is fixed

Let's define a few parameters

event-specific parameters ϕ_{ik}

- muon energy
- muons inital position
- muon momentum

• ...

Per simulation run: N events with randomly drawn ϕ_{ik}

I Ann-Kathrin Schütz 4

HF & LF simulation

RESuM

01/21/2025

Simulation run:

N events with

- design parameter $\boldsymbol{\theta}_k$ and
- event-specific parameter $\boldsymbol{\phi}_{ik}$ (drawn from $g(\boldsymbol{\phi})$)

 $X_{ik} \sim \text{Bernoulli}(p = t(\theta_k, \phi_{ik}))$

Trigger Probability $t(\boldsymbol{\theta}_k, \boldsymbol{\phi}_{i,k})$ small

Rare Event Problem

Signal trigger rate

 $y = \frac{1}{N} \sum X_{ik}$

~ $Poisson(N\bar{t})/N$

Rare Event Assumption

Event Simulation

N events with

- design parameter $\boldsymbol{\theta}_k$ and
- event-specific parameter $\boldsymbol{\phi}_{ik}$ (drawn from $g(\boldsymbol{\phi})$)

$$X_{ik} \sim \text{Bernoulli}(p = t(\theta_k, \phi_{ik}))$$

Trigger Probability $t(\boldsymbol{\theta}_k, \boldsymbol{\phi}_{i,k})$ small

Rare Event Problem

 $N \rightarrow \infty$, y will asymptotically approximate the expected trigger probability

$$\overline{t}(\boldsymbol{\theta}) = \int t(\boldsymbol{\theta}, \boldsymbol{\phi}) g(\boldsymbol{\phi}) \mathrm{d}\boldsymbol{\phi}$$

Ultimate metric to optimize

$$\theta^{\star} = \arg\min_{\theta \in \Theta} \overline{t}(\theta)$$

Event Simulation

N events with

$$X_{ik} \sim \text{Bernoulli}(p = t(\theta_k, \phi_{ik}))$$

1. Conditional Neutral Process

Rare Event Surrogate Model (ReSUM)

Miligate statistical noise

- Converts each discrete event outcome into a continuous score
- Propagates uncertainty awareness into final mapping

Reduce computational cost

• Multi-Fidelities approach where low-fidelity (LF) helps with space exploration

Rare Event Surrogate Model (ReSUM)

2. Multi-fidelity Gaussian Process

only ~1 merger!

Binary Black Hole Population Synthesis In Collaboration with **Prof. Floor Broeckgarden (UCSD)**

- most interesting gravitational wave sources occur in extreme tails of distr.

Binary Black Hole Population Synthesis In Collaboration with **Prof. Floor Broeckgarden (UCSD)**

[Pictures from F. Broeckgarden]

-

Rare Event Surrogate Model (RESuM) for **Physics Detector Design**

Ann-Kathrin Schuetz¹ Alan Poon¹ Aobo Li²

For more details see our paper

International Conference On Learning Representations

