<u>ePIC SVT detector</u> Electron & Hadron Endcaps paving

Rita Sadek and Ernst Sichtermann

EIC Meeting 03/11/2025

Zone 1:

Strategy for minimum overlap in the inner region, maximum at the outer region. Vertical overlap is constant between all zones (2.175 mm)

- Inner circle:
 - Symmetric filling -> cut zone in 2, x<0 and x>0.

Filling starts at $min(\sqrt{R_{in}^2 - y^2}, \sqrt{R_{in}^2 - (y + sensor height)^2})$, closest possible to beam pipe, with overlap of 6 mm between each sensor to cover the readout strips. Stop filling at one sensor outside of the outer circle, last one is then pushed back in at $max(\sqrt{R_{out}^2 - y^2}, \sqrt{R_{out}^2 - (y + sensor height)^2})$. Mirrored coordinates for

x>0.

- Double inner circles:

Same logic for inner circle, difference in filling starts at:

x<0:

 $min(\sqrt{R1_{in}^2 - y^2}, \sqrt{R1_{in}^2 - (y + sensor height)^2}, \sqrt{R2_{in}^2 - y^2}, \sqrt{R2_{in}^2 - (y + sensor height)^2})$ x>0:

 $max(\sqrt{R1_{in}^2 - y^2}, \sqrt{R1_{in}^2 - (y + sensor height)^2}, \sqrt{R2_{in}^2 - y^2}, \sqrt{R2_{in}^2 - (y + sensor height)^2})$

+ Taking into account x if circle not centered around (0,0)

+ Filling done with both 5-RSUs and 6-RSUs sensors, best scenario (least additional overlap) is selected for paving.

+ 5 mm added to the inner circles to take into account bake out.

Zone 2:

Same strategy for minimum overlap in the inner region, maximum at the outer region.

Start filling with first sensor at

 $max(\sqrt{R_{out}^2 - y^2}, \sqrt{R_{out}^2 - (y + sensor height)^2})$, with overlap of 6 mm

between each sensor to cover the readout strips. Stop filling at one sensor outside of the outer circle, last one is then pushed back in at $min(\sqrt{R_{out}^2 - y^2}, \sqrt{R_{out}^2 - (y + sensor height)^2})$. The overlap is divided by 2 and distributed on both sides.

<u>Zone 3:</u>

Same strategy as zone 2, difference in overlap distribution: additional overlap calculated between the first sensor outside of the outer circle, and the outer circle. Then, this additional overlap is distributed equally between all the sensors.

Disks overview

Region	Disk	z [mm]	inner radius* [mm]	outer radius [mm]	X/X0
EE	ED0	-250	36.76	240	0.24
	ED1	-450	36.76	415	0.24
	ED2	-650	36.76	421.4	0.24
	ED3	-850	40	421.4	0.24
	ED4	-1050	46.35	421.4	0.24

Region	Disk	z [mm]	inner radius* [mm]	outer radius [mm]	X/X0
HE	HD0	250	36.76	240	0.24%
	HD1	450	36.76	415	0.24%
	HD2	700	38.46	421.4	0.24%
	HD3	1000	53.43	421.4	0.24%
	HD4	1350	70.14	421.4	0.24%

.% .% .% ŀ%

EDO/HDO and ED1/HD1

ED2 and ED3

HD3 and HD4

- At least three relevant dimensions; pitch, height, and angle others include length, thickness, ...
- The sensor has a width w (= 19.564 mm for MOSAIX and EIC-LAS),
- p and w (times two) are not necessarily equal, although they are coupled,
- p = 34.77 mm; h = 6 mm; $\theta = 45^{\circ}$ in preceding slides,

Corrugated core

Corrugated core

Beam pipe opening

- p and w are coupled to tiling around the beampipe,
- Even number of sensor rows in the preceding slides to clear the bermpipe is not a hard requirement,

• Aside, CAD and MC need to be cross-checked.

d

Closing comments

- There are multiple ways to tile a disk,
- EIC-LAS is limited to two variants with 5 or 6 RSUs,
- Disks can make use of either or both variants,
- Rows within disks should best use one variant (efficiency of the serial powering chains),
- Tiling strategy that minimizes overlap along the length of the sensor in the inner region ensures that the distance between Left EndCaps is constant in the inner region; this presents a significant simplification of the electrical interfaces (FPCs)
- This tiling strategy accommodates overlap at the outermost EIC-LAS; if the FPC Interface Board can be designed to accept an FPC for the innermost sensors and a separate FPC for the outermost sensor, we can likely simplify the FPC design for the innermost sensors,
- We are wrapping up the remaining loose ends; the trade-offs between p, o, and bermpipe clearances being most relevant.

• We have chosen to tile in rows; prior studies included e.g. a crucifix and herringbone configurations

