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OUTLINE:OUTLINE:

  lattice regularization andlattice regularization and
  continuum limitcontinuum limit

  QCD close to the chiralQCD close to the chiral
  limit, O(N) scaling, phaselimit, O(N) scaling, phase
  diagramdiagram

  finite density QCDfinite density QCD
  moments of charge moments of charge 
  fluctuations as probe forfluctuations as probe for
  proximity to criticalityproximity to criticality
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QCD thermodynamicsQCD thermodynamics
                            at non-zero temperature and densityat non-zero temperature and density
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Consider a Hamiltonian, H, for a particle in a potential V(q):

The Hamiltonian, H, will have a discrete Eigenvalue spectrum,
if                       for                 .

The time evolution operator U(t,t') describes the time-dependent
states,

The time evolution operator obeys a Schroedinger equation:

Path Integrals and ThermodynamicsPath Integrals and Thermodynamics
                    in Quantum Mechanicsin Quantum Mechanics
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Green's functions:

Time evolution of the state           into the state

Path Integrals in Quantum Mechanics, cont'dPath Integrals in Quantum Mechanics, cont'd

Green's function of a free particle of mass m: 

Eigenstates of the 
momentum operator: 
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As H commutes with itself, the time evolution operator can be split
into an arbitrary number of (infinitesimal) time steps:

With this one can rewrite the Green's function, using eigenstates of
the coordinate operator:

Need a representation of this matrix element for small 

Path integral representation of the Green's functionPath integral representation of the Green's function

lattice spacing !!
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use Baker-Hausdorff to split exponentials:

Path integral representation of the Green's functionPath integral representation of the Green's function

discretization errors
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use Baker-Hausdorff to split exponentials:

Sign changed: from Hamiltonian to Lagrangian !!

discretization error == cut-off effects

Path integral representation of the Green's functionPath integral representation of the Green's function
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{

L(q,q') :Lagrangianclassical action

weighted sum over all paths
connecting x(t') and y(t'')

Path integral representation of the Green's functionPath integral representation of the Green's function
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rotate to imaginary time;

Euclidean action:

partition function: 

imaginary time

advantages:

- no oscillating terms; convergence properties of integrals under control

- probability interpretation

Euclidean  formulationEuclidean  formulation
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ground state energy:

Euclidean path integral over all paths with period   
is the partition function of a system at temperature 

Euclidean  formulation            ThermodynamicsEuclidean  formulation            Thermodynamics

choose periodic
paths, i.e. y=x
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the lattice:
lattice spacing:

partition function:

chemical potential

Mike Creutz

T: temperature V: volume

Simulating strongly interacting matter on aSimulating strongly interacting matter on a
discrete space-time griddiscrete space-time grid  (lattice QCD)(lattice QCD)
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Discretizing QuantumchromodynamicsDiscretizing Quantumchromodynamics

Euclidean action of QCD:

Fermions:

covariant derivative:

-matrices anti-commute:

4-spinor:

Gauge fields:

non-abelian field strength tensor
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lattice discretization:

I)  introduce gauge degrees of freedom on links;
II) choose compact link-variables

matrix

the plaquette variable

THE  IDEA

K. Wilson, 
Phys. Rev. D 10 (1974) 2445

gauge invariance
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{
use Baker-Hausdorff repeatedly

discretization
error

better:

naïve continuum limitnaïve continuum limit
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Discretization of the fermion sectorDiscretization of the fermion sector

Fermions:

discretization of first order derivative in fermionic part is 
straightforward:

discretization of derivative generates
point-split terms          local gauge invariance?

improved actions: higher order difference schemes allow to
                             reduce discretization errors  
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Fermions:

discretization of first order derivative in fermionic part is 
straightforward:

takes care of gauge
invariance and generates
covariant derivative

Discretization of the fermion sectorDiscretization of the fermion sector
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Improved discretization of the fermion sectorImproved discretization of the fermion sector

staggered fermions:

discretization of first order derivative in fermionic part: 

naive, 1-link improved, 3-link

1-link:  standard staggered, stout,...

3-link:  Naik, asqtad, HISQ,... drastically improved high-T
behavior

staggered phase 
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Cut-off effects in the infinite temperature limitCut-off effects in the infinite temperature limit

QCD,                   : asymptotic freedom, ideal gas

free energy: standard

Naik, p4
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Fermion DeterminantFermion Determinant

partition function again:

The fermion determinant  The fermion determinant   –  – encodes the symmetries  of
                                              the fermion sector of QCD

                                           – is not positive definite for 
                                              non-zero chemical potential
                                    

other discretization schemes:

-  Wilson fermions (clover fermions)
-  domain wall fermions
-  overlap fermions
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The continuum limit of lattice regularized QCDThe continuum limit of lattice regularized QCD

- at present we consider only SU(N) gauge theories

- the only free parameter is the gauge coupling       or

Continuum limit:

Continuum limit: physical observables,
                           do not depend on the lattice spacing (cut-off) 

with -function

renormalization 
group equation
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the next order: 

re-introducing 
color factors and
non-zero flavor
numbers

Asymptotic FreedomAsymptotic Freedom

in massless QCD        is the only 'free parameter' that sets the scale

for ALL PHYSICAL OBSERVABLES.

related to     -parameter in other regularization schemes, e.g.:
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universal weak coupling
scaling behavior;
cut-off dependence is
eliminated

Asymptotic FreedomAsymptotic Freedom
at workat work

Monte Carlo simulationMonte Carlo simulation
                          19791979

Mike Creutz

non-zero string tension

confinement
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Lines of constant physicsLines of constant physics

approach to continuum limit in QCD with several quark masses:

quark masses (unrenormalized, in lattice units): 

for given     tune                                              such that  2 experimentally 
known observables, e.g. 2 hadron masses, are reproduced  

need one additional observable to fix the physical scale; e.g.

all parameters are now fixed
for ALL T=0 as well as T>0 
calculations

e.g. we need to control 3

parameters:

or
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Ready to go.....
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the lattice:
lattice spacing:

partition function:

T: temperature V: volume chemical potential

Simulating strongly interacting matter on aSimulating strongly interacting matter on a
discrete space-time grid discrete space-time grid (lattice QCD)(lattice QCD)
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QCD equation of stateQCD equation of state

– calculating the equation of state on lines of constant physics

– the pressure: integrating the trace anomaly

– the trace anomaly

– need T-scale and its relation to the gauge coupling:
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Determination of the scale (lattice spacing)Determination of the scale (lattice spacing)

– calculate an experimentally known observable, e.g. 

– a lattice calculation provides this observable in units of  “a” 

this ''defines'' the lattice spacing based on
the calculation of a physical observable

only in the continuum limit will all definitions of a lattice spacing
based on different observables agree

– temperature scale:
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Several T=0 observables used to set a scaleSeveral T=0 observables used to set a scale

decay constants, hadron masses,
heavy quark potential,.....
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stout.cont.: estimate of continuum result based on average of Nt=8,10
                  data, Budapest-Wuppertal,1007.2580

The trace anomaly:The trace anomaly:

HISQ/tree: hotQCD preliminary
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Energy density, pressure, entropy densityEnergy density, pressure, entropy density

Bazavov et al (HotQCD), PRD 80 (09) 14504                     Petreczky, NPA 830 (10) 11c

rapid rise of the energy density reflects the ''liberation'' of many
new degrees of freedom  (?)

– deconfinement
– chiral symmetry restoration
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Cut-off effects in the infinite temperature limitCut-off effects in the infinite temperature limit

QCD,                   : asymptotic freedom, ideal gas

free energy: standard

Naik, p4
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Velocity of soundVelocity of sound 

A. Bazavov et al (hotQCD Coll.), 
Phys. Rev. D80 (2009) 014504
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confinement

deconfinement

– stick together, find  a comfortable
   distance
– controlled by the ''confinement potential''

screening, color is neutralized on the
average over a (short) distance 

This transition happens abruptly: PHASE TRANSITION

– freely floating in the crowed
– do not care what color your neighbor has 

The confinement – deconfinement transition
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Screening of static quark anti-quark pairsScreening of static quark anti-quark pairs

Polyakov loop:

Debye screened Coulomb potential

quarkonium melting

free energy:
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