

Contribution ID: 148

Type: Oral

Evidence of seniority conservation via lifetimes measurements in the N=50 isotones towards 100Sn

Friday 17 June 2022 10:10 (20 minutes)

The experimental evidence of the seniority conservation is a direct evidence of the validity of the short-range pairing interaction, with far-reaching implications for nuclear structure in the validity of the BCS theory and therefore of the quasiparticle representation of the atomic nucleus [1]. In theory, this symmetry is preserved up to j <= 7/2 and, contradictory experimental results exist for orbitals with larger angular momenta. In order to shed light on the open question of the seniority conservation in the proton $g_{9/2}$ orbital in the N = 50 isotones, reduced transition probabilities in 90 Zr, 92 Mo and 94 Ru nuclei, have been determined experimentally for the first time via lifetime measurements at the GANIL laboratory. The unconventional use of multi-nucleon transfer reaction [2] with a differential plunger device [3] allowed to measure lifetimes of the yrast low-spin states despite the presence of isomers in the proton-rich isotones. The required sensitivity to the lifetimes could only be achieved with the AGATA+VAMOS++ detection system [4,5].

The reduced transition probabilities for the $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ yrast transitions in 92 Mo and 94 Ru and for the $4^+ \rightarrow 2^+$ and $6^+ \rightarrow 4^+$ yrast transitions in 90 Zr determined in this experiment will be discussed in this contribution and, the results, will be interpreted on the basis of realistic shell-model calculations in the $f_{5/2, p3/2, p1/2, g9/2}$ proton valence space, where it emerges that seniority is conserved in the first $\pi g_{9/2}$ orbital [6]. The results are relevant as well in the understanding of the evolution of the nuclear effective interaction in the Z = 28 isotopes towards 78 Ni, located much further away from the stability line than the N = 50 isotones.

- [1] S. Cohen et al., Phys. Lett. 10, 195 (1964)
- [2] R. Broda et al., Phys. Lett. B 251, 245 (1990)
- [3] A. Dewald et al., Prog. Part. Nucl. Phys. 67, 786 (2012)
- [4] S. Akkoyun, et al., Nucl. Instr. Meth. Phys. Res. A 668, 26 (2012)
- [5] M. Rejmund, et al., Nucl. Instr. Meth. Phys. Res. A 646,184 (2011)
- [6] R.M. Pérez-Vidal, et al. Submitted to Phys. Rev. Lett.

Authors: PÉREZ VIDAL, Rosa María; GADEA , Andres (CSIC IFIC); DOMINGO PARDO, César (IFIC-C-SIC); GARGANO, Angela (INFN Complesso Universitario di Monte S. Angelo); AND THE AGATA, VAMOS++ AND IKP PLUNGER COLLABORATIONS

Presenter: PÉREZ VIDAL, Rosa María

Session Classification: NS2022 Plenary

Track Classification: Oral Presentations