

Summary and outlook

Spectroscopic studies on the β-delayed neutron emission near ⁵⁴Ca

Zhengyu Xu

on behalf of the VANDLE group at UTK and the IDS collaboration at ISOLDE-CERN

THE UNIVERSITY OF TENNESSEE KNOXVILLE

Beta decay, nuclear structure, and neutron emission

$$\frac{1}{T_{1/2}} = \sum_{E_i \ge 0}^{E_i \le Q_\beta} S_\beta (E_i) \times f(Z, Q_\beta - E_i) \quad S_\beta (E_i) = \langle \psi_f | \hat{O}_\beta | \psi_{mother} \rangle \Big|^2$$

- $S_{\boldsymbol{\beta}}$ is determined by the nuclear structure in parent and daughter nuclei
- $f(Z, Q_{\beta} E_i)$ is the phase-space factor (Fermi integral)
- I_{β} is strongly modulated by *f*, which follows ~ $(Q_{\beta} E_i)^5$
- When states above neutron-separation energy (S_n) are populated, neutron emissions become the dominant decay process following beta decays

→ Neutron spectroscopy becomes more and more important in reconstructing S_{β} in more neutron-rich nuclei

A controversy in beta-delayed neutron emissions

- The mismatch between initial and final wavefunctions was seen in beta-delayed neutron emission (J. Heideman, R. Grzywacz et al., submitted for peer review)
- Microscopic calculations such as the shell-model calculation are difficult
- Hauser-Feshbach statistical model [1] is used to predict inclusive neutron-emission branching ratios (e.g., Ref. [2])
- → Exclusive neutron-emission branching ratios make a step forward and provide more insights

Nuclear Structure 2022 13-17 June 2022 Berkeley, CA

[1] T. Kawano et al., Phys. Rev. C 78, 054601 (2008)
[2] R.Yokoyama et al., Phys. Rev. C 100, 031302(R) (2019)

Is ⁵⁴Ca (Z=20, N=34) a doubly magic nucleus, like ¹³²Sn (?)

How many neutrons occupy the f_{5/2} orbital above N=34 in ^{52,53}K (i.e., is N=34 a strong shell gap)?

	50Ca	51Ca	52Ca	53Ca	54Ca
	13.9 S	10000 MS	4600 MS	461 MS	107 MS
20	β-: 100.00 %	β-: 100.00% β-n	β -: 100.00% β -n < 2.00%	β-: 100.00% β-n: 40.00%	β-: 100.00 %
	49K	50K	51K	52K	53K
	1263 MS	472 MS	365 MS	110 MS	30 MS
19	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.0%	β-: 100.00%
	β-n: 86.00%	β-n: 28.60%	β-n: 65.00%	β-n: 72.20%	β-n: 75.00%
	48Аг	49Аг	50Ar	51Ar	52Ar
	424 MS	236 MS	106 MS	>200 NS	>620 NS
18	β-: 100.00% β-n: 38.00%	β-: 100.00% β-n: 29.00%	β-: 100.00% β-n: 37.00%	β-: 100.00 %	β-: 100.00% β-n
	3 0	31	32	33	34

Is ⁵⁴Ca (Z=20, N=34) a doubly magic nucleus, like ¹³²Sn (?)

- How many neutrons occupy the f_{5/2} orbital above N=34 in ^{52,53}K (i.e., is N=34 a strong shell gap)?
- \rightarrow I_{β} is our probe to the shell gap

	50Ca	51Ca	52Ca	53Ca	54Ca
	13.9 S	10000 MS	4600 MS	461 MS	107 MS
20	β-: 100.00 %	β-: 100.00% β-n	β -: 100.00% β -n < 2.00%	β-: 100.00% β-n: 40.00%	β-: 100.00 %
	49K	50K	51K	52K	53K
	1263 MS	472 MS	365 MS	110 MS	30 MS
19	β-: 100.00 %	β-: 100.00 %	β-: 100.00%	β-: 100.0%	β-: 100.00%
	β-n: 86.00 %	β-n: 28.60%	β-n: 65.00%	β-n: 72.20%	β-n: 75.00%
	48Ar	49Ar	50Ar	51Ar	52Ar
	424 MS	236 MS	106 MS	>200 NS	>620 NS
18	β-: 100.00 % β-n: 38.00 %	β-: 100.00% β-n: 29.00%	β-: 100.00% β-n: 37.00%	β-: 100.00 %	β-: 100.00% β-n
	30	31	32	33	34

Is ⁵⁴Ca (Z=20, N=34) a doubly magic nucleus, like ¹³²Sn (?)

- How many neutrons occupy the f_{5/2} orbital above N=34 in ^{52,53}K (i.e., is N=34 a strong shell gap)?
- \rightarrow I_{β} is our probe to the shell gap

or

20	50Ca 13.9 S	51Ca 10000 MS	52Ca 4600 MS	53Ca 461 MS	54Ca 107 MS
	β-: 100.00 %	β-: 100.00% β-n	β-: 100.00% β-n < 2.00%	β-: 100.00% β-n: 40.00%	β-: 100.00 %
19	49K 1263 MS	50K 472 MS	51K 365 MS	52K 110 MS	53K 30 MS
	β-: 100.00 % β-n: 86.00%	β-: 100.00% β-n: 28.60%	β-: 100.00% β-n: 65.00%	β-: 100.0% β-n: 72.20%	β-: 100.00% β-n: 75.00%
	48Ar 424 MS	49Ar 236 MS	50Ar 106 MS	51Ar >200 NS	52Ar >620 NS
18	β-: 100.00 % β-n: 38.00%	β-: 100.00% β-n: 29.00%	β-: 100.00% β-n: 37.00%	β-: 100.00 %	β-: 100.00 % β-n
	30	31	32	33	34

Is ⁵⁴Ca (Z=20, N=34) a doubly magic nucleus, like ¹³²Sn (?)

- How many neutrons occupy the f_{5/2} orbital above N=34 in ^{52,53}K (i.e., is N=34 a strong shell gap)?
- \rightarrow I_{β} is our probe to the shell gap
- → The exclusive neutron branching ratios around ⁵⁴Ca provide another valuable input to the statistical-model calculation

	50Ca 13.9 S	51Ca 10000 MS	52Ca 4600 MS	53Ca 461 MS	54Ca 107 MS
20	β-: 100.00 %	β-: 100.00% β-n	β-: 100.00% β-n < 2.00%	β-: 100.00% β-n: 40.00%	β-: 100.00 %
	49K 1263 MS	50K 472 MS	51K 365 MS	52K 110 MS	53K 30 MS
19	β-: 100.00 % β-n: 86.00%	β-: 100.00 % β-n: 28.60%	β-: 100.00 % β-n: 65.00%	β-: 100.0% β-n: 72.20%	β-: 100.00 % β-n: 75.00 %
	48Аг 424 MS	49Ar 236 MS	50Ar 106 MS	51Ar >200 NS	52Ar >620 NS
18	β-: 100.00% β-n: 38.00%	β-: 100.00% β-n: 29.00%	β-: 100.00% β-n: 37.00%	β-: 100.00 %	β-: 100.00% β-n
	30	31	32	33	34

Previous work at ISOLDE Decay Station (MINIBALL+TONNERRE+LEND): F. Perrot et al., Phys. Rev. C 74, 014313 (2006)

More statistics are needed for a decisive conclusion for ^{53}K (no β - γ -n analysis was performed in previous work)

This work:

- Remeasure the I_{β} of ⁵²K decay (confirmation)
- Establish the I_{β} ⁵³K for the first time

Experimental setup (IS599, PI: A. Gottardo, R. Grzywacz, M. Madurga)

ISOLDE Decay Station (IDS)

Data analysis with neutron & gamma spectra

Data analysis with neutron & gamma spectra

Data analysis with neutron & gamma spectra

Experimental result: nTOF following the decay of ⁵³K

Experimental result: nTOF following the decay of ⁵³K

The B(GT) distribution indicates a strong N=34 shell gap

The B(GT) distribution indicates a strong N=34 shell gap

Exclusive neutron branching ratios matter

J. Heideman, R. Grzywacz et al., submitted for peer review

Exclusive neutron branching ratios matter

Summary and outlook

- Beta decays of ^{52,53}K were studied at ISOLDE Decay Station with a hybrid detection system (beta + gamma + neutron)
- Analysis methods were developed to obtain apparent beta feeding and neutron exclusive branching ratios simultaneously
- The results were compared with SM calculations, and we did not see the evidence of a reduced neutron shell gap at N=34 shell gap
- The comparison of the neutron exclusive branching ratios with the statistical model (HF) shows some spindependency and the possibility of model-dependent spin assignment
- So far, only allowed Gamow-Teller strength distribution has been calculated in the SM, which will be extended to include First-Forbidden transitions soon.

Collaboration of IS599

A. Gottardo¹, R. Grzywacz², M. Madurga³, G. de Angelis⁴, F. Azaiez¹, D. Bazzacco⁵, G. Benzoni⁶, A. Boso⁵, Y. Deyan¹, M.-C.Delattre¹, P. Van Duppen⁷, A. Etilé⁸, S. Franchoo¹, C. Gaulard⁸, G. Georgiev⁸, S. Go², A. Goasduff⁴, F. Gramegna⁴, K. Kolos², M. Kowalska³, S. Ilyushkin⁹, G. Jaworski⁴, Y. Xiao², S.M. Lenzi⁵, J. Ljungvall⁷, P.R. John⁵, R. Li¹, S. Lunardi⁵, T. Marchi⁴, I. Matea¹, D.Mengoni⁵, V. Modamio⁴, A.I. Morales⁶, P. Morfouace¹, D.R. Napoli⁴, S. Paulauskas¹⁰, E.Rapisarda³, S. Roccia⁸, B. Roussier¹, C. Sotty⁷, I. Stefan¹, S. Taylor², J.J. Valiente-Dobón⁴, D. Verney¹, H. de Witte⁷, A. Algora¹¹, K. Riisager¹², A. Negret¹³, N. Marginean¹³, R. Lica¹³, C. Mihai¹³, R.E. Mihai¹³, R. Marginean¹³, C. Costache¹³, S. Nae¹³, A. Turturica¹³.

1 Institut de Physique Nucléaire Orsay
2 University of Tennessee
3 CERN
4 INFN, Laboratori Nazionali di Legnaro
5 University of Padova and INFN Padova
6 University of Milano and INFN Milano
7 KU Leuven
8 CSNSM Orsay
9 Colorado School of Mines
10 NSCL
11 IFIC Valencia
12 Aarhus University
13 IFIN-HH, Bucharest
Spokesperson(s): A. Gottardo (gottardo@ipno.in2p3.fr), R. Grzywacz (rgrzywac@utk.edu), M. Madurga (madurga@cern.ch)

Collaboration of IS599

A. Gottardo¹, R. Grzywacz², M. Madurga³, G. de Angelis⁴, F. Azaiez¹, D. Bazzacco⁵, G. Benzoni⁶, A. Boso⁵, Y. Deyan¹, M.-C.Delattre¹, P. Van Duppen⁷, A. Etilé⁸, S. Franchoo¹, C. Gaulard⁸, G. Georgiev⁸, S. Go², A. Goasduff⁴, F. Gramegna⁴, K. Kolos², M. Kowalska³, S. Ilyushkin⁹, G. Jaworski⁴, Y. Xiao², S.M. Lenzi⁵, J. Ljungvall⁷, P.R. John⁵, R. Li¹, S. Lunardi⁵, T. Marchi⁴, I. Matea¹, D.Mengoni⁵, V. Modamio⁴, A.I. Morales⁶, P. Morfouace¹, D.R. Napoli⁴, S. Paulauskas¹⁰, E.Rapisarda³, S. Roccia⁸, B. Roussier¹, C. Sotty⁷, I. Stefan¹, S. Taylor², J.J. Valiente-Dobón⁴, D. Verney¹, H. de Witte⁷, A. Algora¹¹, K. Riisager¹², A. Negret¹³, N. Marginean¹³, R. Lica¹³, C. Mihai¹³, R.E. Mihai¹³, R. Marginean¹³, C. Costache¹³, S. Nae¹³, A. Turturica¹³.

Thanks for your attention!

4 INFN, Laboratori Nazionali di Legnaro
5 University of Padova and INFN Padova
6 University of Milano and INFN Milano
7 KU Leuven
8 CSNSM Orsay
9 Colorado School of Mines
10 NSCL
11 IFIC Valencia
12 Aarhus University
13 IFIN-HH, Bucharest
Spokesperson(s): A. Gottardo (gottardo@ipno.in2p3.fr), R. Grzywacz (rgrzywac@utk.edu), M. Madurga (madurga@cern.ch)

Backup slides

Detector components

Neutron efficiency curve

Online calibration for INDiE

1-MeV neutrons in GEANT4

- Mono-energetic neutrons from GEANT4 (neutron scattering, time resolution)
- Convolution with the R-Matrix theory (with Lorentzian profile)
- Reproduce the *n*TOF spectra of ⁴⁹K and ¹⁷N simultaneously

