

Study of cross-shell excitations near the 'island of inversion' using fusion-evaporation and Doppler shift methods

Jonathan Williams (TRIUMF) For TIP and TIGRESS

Nuclear Structure 2022 – June 16 Berkeley, California

Background

- At the N=20 'island of • inversion' around ³²Mg, residual nucleon-nucleon interactions and shell evolution result in ground states with neutrons in the *pf* shell.
- For less neutron-rich • species in the *sd* shell, similar configurations occur at high energy.
- Data on these 'cross-• shell' excited states gives insight into shell evolution, but is limited for many nuclides.

Background

- Recent studies have • investigated the higher-spin regime (likely to contain cross-shell excitations) via fusion-evaporation reactions.
- Needs channel separation • via particle or recoil identification, and/or Y coincidence gating.
- Lifetime information is • also useful for identifying intruder states.

Some recent studies of high-spin states: [1] A. N. Deacon et al., PRC 82 034305 (2010). [2] D. Steppenbeck et al., Nucl Phys A 847 149-167 (2010).

[3] R. Dungan et al., PRC 94 064305 (2016). Nuclides covered in this talk

TIP Overview

Program developed at Simon Fraser University, focused on lifetime measurements using Doppler shift methods.

- Lifetimes > 1 ps measured via the Recoil Distance Method (RDM) using a plunger device.
- Lifetimes < 1 ps measured via the Doppler Shift Attenuation Method (DSAM) using a backed target.
- CsI(TI) "ball" array for charged particle detection/identification.
- Target chamber which can be integrated with TIGRESS (*Y*-ray spectrometer) and/or EMMA (recoil separator).

Configuration for this experiment

- ¹⁸O beam @ $\sim 10^{10}$ pps, 48 MeV, ^{nat.}C targets. ۲
 - Channels of interest: ²⁵Na (αp), ²⁸Mg (2p)
- Run time split between a thin target (~21 hours) for coincidence spectroscopy and a DSAM target (~40.5 hours) for lifetime measurements.
- 38-element partial CsI ball.
- 13 TIGRESS clovers in 4/5/4 configuration.

(Not to scale)

²⁵Na thin target results

- ²⁵Na was populated using the ¹²C(¹⁸O,αp) reaction.
- Strong population of a "main band" of 2420, 1041, and 1506 keV transitions.
- Some previously unobserved transitions (labels in red) at high energies.

²⁵Na γ-gated spectra (thin target, Doppler corrected).

J. Williams et al., PRC 102 064302 (2020)

²⁵Na full level scheme

²⁵Na DSAM results

- Comparison to GEANT4 simulations, using maximumlikelihood χ^2 method.
- Feeding corrected by gating from above and simulating the effect of the feeding transition.

²⁵Na 2420 keV transition, simulation @ τ_{mean} = 230(40) fs

²⁵Na calculations (sd shell)

- Low-lying states are well reproduced in USDB calculations in the *sd* shell.
- Some high-lying states don't fit in well and are intruder state candidates.
- Highest energy state @ 7626(4) keV most likely negative parity.

[1] R. S. Lubna, et al., Phys. Rev. Research 2 043342 (2020)

²⁵Na calculations (cross-shell occupancies)

Calculated *pf* orbital occupanices of *1p1h* intruder states in ²⁵Na show differing excitation modes:

- Low spin: proton excitation from the *Op* shell.
- High spin: neutron excitation to the upper *pf* shell.

²⁸Mg thin target results

- ²⁸Mg was • populated using the ¹²C(¹⁸O,2p) reaction.
- A large fraction of transitions are newly observed (labels in red),

including some of the most intense.

²⁸Mg level scheme

²⁸Mg long-lived level

- Long lived level at 6139 keV:
 - 4664.9(12) keV transition stopped in DSAM target data.
 - Doppler shifted in thin target data.
- Inferred level lifetime: > 1 ps, < 250 ps.
- Suggests transition of M2 or higher multipolarity, level I[¬] = 0⁻ or 4⁻
- Similar isomer in nearby ³²Si, also negative parity.

²⁸Mg yrast band B(E2) values

- B(E2) values along yrast band trend lower than most model calculations.
- Ab-initio SA-NCSM [3] calculations agree well with B(E2; 4⁺ → 2⁺) from this data, but disagree with previous data.

- 2) (e² fm⁴)

B(E2; I

 Plunger data taken to measure B(E2; 2⁺ → 0⁺) populated using the same reaction (M. S. Martin, SFU).

[1] P. Fintz et al., Nucl. Phys. A 197, 423 (1972) 20
[2] T. R. Fisher et al., Phys. Rev. C 7, 1878 (1973)
[3] K. D. Launey, T. Dytrych, and J. P. Draayer, Progress in Particle and Nuclear Physics 89, 101 (2016)

Future plans - ³²Si

Cross-shell excitations in ³²Si will be investigated with the ²²Ne(¹²C,2p) reaction. Goals are to obtain improved lifetime measurements, measure angular distributions, and determine the placement of the $I^{T} = (5^{-})$ nanosecond isomer.

[1] R. S. Lubna, et al., Phys. Rev. Research 2 043342 (2020)
[2] B. Fornal et al., Phys. Rev. C 55 762 (1997)
[3] M. Asai et al., JAERI Tandem Annual Report 2001, 23 (2002)

³²Si test data – singles

Initial test data taken with a ¹²C thin target + downstream ¹⁹⁷Au stopper shows population of the isomer. Analysis of this data will inform plans to run the full experiment in the coming year.

³²Si test data – the isomer

- No evidence yet of the 79 keV isomeric transition assumed in NNDC (expect >1/2 the counts of the 1941 keV line).
 - Suggests a $5^- \rightarrow 2^+_1$ E3 transition.
 - B(E3)↓ would be
 ~100x lower than
 values in nearby ³⁶Cl and ³⁹K.
- If true, then the 4⁺₁ state in ³²Si is not yet assigned (maybe we can do it).

³²Si test data – prompt transitions

- Doppler corrected data shows that the 2⁺₁ level is also populated by prompt transitions.
 - Includes known 3_{1}^{-} $\rightarrow 2_{1}^{+}$ transition.
 - No immediately obvious indication of a 4⁺, level.
- More data coming soon[™].

Recent TIP experiments: ²⁸Mg RDM

Follow-up to the earlier DSAM measurements in ²⁸Mg.

- Aims to measure B(E2; 2⁺₁ → 0⁺₁) and investigate the discrepancy with ab-initio SA-NCSM calculations.
- May also measure the lifetime of the long-lived state at 6139 keV.
- Beamtime in 2021, data under early analysis.

Plunger spectra of the $2_{1}^{+} \rightarrow 0_{1}^{+}$ transition in ²⁸Mg (51.5µm separation).

Poster: Electromagnetic Transition Rate Studies in ²⁸Mg (M. S. Martin, SFU)

Recent TIP experiments: *A=55* mirror symmetry

Poster: Mirror Symmetry in the f_{7/2} Shell Below ⁵⁶Ni, Excited States and Electromagnetic Transition Rates in ⁵⁵Ni and ⁵⁵Co (H. Asch, SFU)

Summary

Experimental results:

- Extension of level schemes in ²⁵Na and ²⁸Mg in the high energy/spin regime.
 - Higher energy states in ²⁵Na not well reproduced by USDB, are probable intruder states.
 - Long-lived intruder state in ²⁸Mg.
- Also studied ²²Ne (2α channel) and found several new transitions/levels.
- Initial ³²Si data shows nanosecond isomer population.

Ongoing and future work:

- Analysis of plunger data on ²⁸Mg (M. S. Martin, SFU).
- Study of A=55 mirror nuclei (⁵⁵Co/⁵⁵Ni) using fusion-evaporation with a radioactive ²⁰Na beam (H. Asch, SFU).
- Follow up study of cross-shell excitations in ³²Si.

Acknowledgments

Simon Fraser University – H. Asch, A. Chester, T. Domingo, M. S. Martin, P. Spagnoletti, K. Starosta, K. Whitmore

TRIUMF - G. C. Ball, A. B. Garnsworthy, G. Hackman, J. Henderson, R. Henderson, V. Karayonchev, R. Krücken, R. S. Lubna, J. Measures, O. Paetkau, J. Park, D. Rhodes, J. Smallcombe, M. Williams

University of Guleph - C. E. Svensson

Louisiana State University – K. D. Launey, G. H. Sargsyan

IIT Roorkee – A. Kumar, P. C. Srivastava, P. Choudhary

Backup – ²²Ne level scheme

Backup - ²⁸Mg shell model calculations

- The species of interest is produced in the target and recoils into a backing, which slows it over time.
- The distribution of Doppler shifted gamma-ray energies observed depends on the mean lifetime of the transition.

Backup – Reaction mechanisms

Fusion-evaporation reactions give access to states in the regime where cross-shell excitations play a role.

- Complementary to existing beta decay studies in the region.
- Multiple channels can be analyzed from a single dataset.
- Identification of charged particles and/or the residual nucleus is needed to separate reaction channels.

	This work				Ref. [29]		
E_{level} (keV)	E_{γ} (keV)	$I_{\gamma,\mathrm{rel}}$	a_2	I^{π}	$\tau_{\rm mean}~({\rm fs})$	I^{π}	$\tau_{\rm mean}~({\rm fs})$
1274.59(3)	1274.55(3)	1.000(15)	0.25(3)	(2+)	>3500 ^b	2^{+}	5190(70)
3357.2(4)	2082.5(4)	0.747(13)	0.30(2)	(4^{+})	290(50) ^a	4+	325(6)
4455.7(10)	3180.9(10)	0.066(3)	0.16(8)	_	<14 ^b	2^{+}	5(4)
5145.3(10)	690.4(3)	0.0161(15)	-0.31(17)	_	1170(140)	2-	1200(300)
	3869.1(14)	0.0162(16)	-0.78(16)				
5363.4(18)	4088.4(18)	0.032(2)	0.02(9)	_	<4 ^b	2^{+}	100(17)
5523.0(6)	2165.7(5)	0.084(2)	0.56(3)	_	$20(5)^{a}$	$(4)^{+}$	30(4)
5639.9(13)	2283.5(16)	0.013(2)	-0.1(4)	_	20(8)	3+	<4
	4364(2)	0.023(2)	-0.09(10)				
5910.3(10)	1454.9(7)	0.0040(8)	-0.1(3)	_	71(16)	3-	46(16)
	4634.4(19)	0.024(2)	-0.50(9)				
6117.8(15)	1662.6(9)	0.0091(19)	-0.7(4)	_	24(16)	2^{+}	20(10)
	4839(3)	0.0111(13)	-0.09(15)				
6312.0(10)	2954.6(9)	0.206(5)	0.24(3)	(6+)	57(6)	(6+)	71(6)
6345.9(13)	2988.5(12)	0.044(2)	0.21(13)	_	16(5)	4+	19(4)
6632.4(19)	2175(2)	0.0028(7)	-0.3(7)	_	<240ª	$(3, 4)^+$	70(30)
	3276(3)	0.0055(10)	-0.3(4)				
	5362(5)	0.0083(14)	-0.31(17)				
6812.8(17)	2356.9(13)	0.0019(6)	-0.3(6)	$(2, 3, 4^+)$	160^{+130}_{-90}		
6841(7)	5566(7)	0.0050(12)	-0.2(2)	$(2, 3, 4^+)$	<380 ^b	_	_
7337(2)	3979(2)	0.025(2)	0.17(10)	_	<26 ^b	$(4)^{+}$	50(30)
7423.0(9)	1899.9(6)	0.033(2)	-0.47(19)	_	<40 ^b	(5^{+})	<4
7616(7)	6340(7)	0.0052(10)	-0.4(2)	$(2, 3, 4^+)$	<32 ^b	_	_
7723(2)	3266.9(18)	0.0056(11)	-0.5(6)		<22 ^b	3-	
8131(7)	6855(7)	0.0071(11)	-0.6(2)	_	<31 ^b	2^{+}	_
8460(3)	2148(3)	0.0056(12)	-0.7(16)	$(4^+, 5, 6)$	<110 ^b	_	_
8566(5)	5210(6)	0.0038(8)	0.0(4)	$(2^+, 3, 4^+)$	<360 ^b	_	_
	7287(9)	0.0020(7)	0.7(5)				
8743(4)	2431(4)	0.0040(10)	-0.1(3)	$(4^+, 5, 6^+)$	<40 ^b	_	_
	5385(7)	0.0030(7)	-0.5(5)				
9161(5)	5803(4)	0.0069(12)	-0.02(18)	_	70(30)	_	_
9344.6(18)	1921.5(15)	0.0084(17)	0.0(4)	_	<90 ^b	_	_
9493(7)	6135(7)	0.0050(10)	0.0(3)	_	<270 ^b	_	_
10655(5)	1912(7)	< 0.0037	_	(7+)	<120 ^b	_	_
	4343(5)	0.0022(7)	0.9(5)				
11029(4)	4716(3)	0.0017(9)	0.5(6)	(8+)	<64 ^b	$(6^+, 8^+)$	_

Backup – ²²Ne data table

^aCorrected for feeding from an observed transition.

^bLimit reported to a 90% confidence level.

Backup – ²⁵Na data table

This work					Previous results (see footnotes)		
E_{level} (keV)	E_{γ} (keV)	$I_{\gamma,\mathrm{rel}}$	a_2	I^{π}	τ_{mean} (fs)	Ιπ	τ_{mean} (fs)
92(3)	_	_	_	_	_	3/2 ^{+f}	$7.4(4) \times 10^{6f}$
1072(4)	980.4(5)	0.170(14)	-0.7(3)	_	>800 ^b	$1/2^{+f}$	1900(200) ^f
2204(4)	1131.8(4)	0.069(12)	-0.1(3)	_	26(11)	$3/2^{+f}$	36(6) ^f
2419.8(11)	2419.6(11)	1.00(3)	0.30(3)	$(9/2^+)$	230(40) ^a	9/2 ^{+e}	240(40) °
2791.0(12)	2699(3)	0.018(4)	0.9(3)	_	150(20) ^a	7/2 ^{+e}	190(35)° / 250(50)d
	2790.8(13)	0.192(15)	0.39(14)	_			
3355(3)	3355(3)	0.045(16)	-0.2(3)	_	<49 ^b	$(7/2)^{+c}$	$23(7)^{f}$
3460.9(9)	669.1(7)	0.022(3)	-0.4(2)	$(9/2^+)$	190(30) ^a	9/2 ^{+e}	210(25) ^f / 130(40) °
	1041.3(4)	0.427(11)	0.12(3)				
	3462(3)	0.032(11)	-0.1(7)				
3963(4)	2891(3)	0.026(9)	0.0(5)	$(1/2, 3/2, 5/2^+)$	<250 ^b	$(1/2^+, 3/2, 5/2^+)^{f}$	$< 140^{f}$
3999.6(11)	1209.0(4)	0.135(10)	-0.31(9)	_	90(7)	9/2 ^{+e}	100(20) °
	1579.1(13)	0.028(4)	0.0(3)			,	
4005(5)	2933(3)	0.026(9)	-0.8(6)	(1/2, 3/2)	90(50)	_	$45(10)^{f}$
4294(5)	3222(3)	0.030(10)	-0.4(7)	_	<29 ^b	$1/2^{+f}$	_
4967.3(8)	967.3(9)	0.011(3)	-0.2(5)	_	72(6) ^a	$(11/2)^{+c}$	
	1506.2(6)	0.244(10)	-0.70(8)				80(20) °
	2548.0(12)	0.140(9)	-0.03(13)				120(30) °
5231(2)	1875.0(12)	0.04(2)	0.3(2)	(7/2, 9/2)	<15 ^b	_	_
	2441(3)	0.009(3)	-0.9(9)				
5388.4(18)	2968.4(15)	0.170(10)	-0.15(13)	$(11/2^+)$	<4 ^b	$(9/2, 11/2)^{+c}$	_
5749(4)	3329(4)	0.016(3)	0.1(4)	(9/2, 11/2, 13/2)	<280 ^b		_
5848(3)	3058(3)	0.014(3)	0.9(5)		<75 ^b	7/2 ^{+e}	_
	3427(4)	0.017(3)	0.1(4)			-, –	
6271(5)	3480(4)	0.010(2)	-0.3(7)	(9/2, 11/2)	<37 ^b	_	_
	3851(5)	< 0.004	_				
6381(3)	2924(5)	0.018(5)	-0.6(8)	(9/2, 11/2, 13/2)	<9 ^b	_	_
	3958(4)	0.037(4)	-0.1(2)	(-,-,-,-,-,-,-,-,			
6581(2)	3120(4)	0.020(4)	-0.2(7)	_	<40 ^b	$(11/2^{-})^{e}$	_
(_)	4163(4)	0.027(3)	-0.1(3)			(,- ,	
6736.6(19)	1348.9(13)	0.021(5)	0.3(3)	$(13/2^+)$	<4 ^b	_	_
0,0000(13)	1770.7(16)	0.064(8)	-0.3(2)	()			
	3275(6)	0.012(4)	-0.1(10)				
	4313(3)	0.053(4)	0.3(2)				
6854(2)	1467.9(10)	0.026(4)	-0.6(3)	$(13/2^{+})$	60(40)	$(11/2, 13/2)^{+c}$	_
	3395(5)	0.015(4)	-0.7(7)	(,-)	()	(,-,,-)	
	4436(3)	0.031(3)	0.5(4)				
7218(4)	3218(4)	0.012(3)	0.6(4)	(9/2, 11/2, 13/2)	<140 ^b	_	_
	4796(9)	0.006(2)	-1.4(13)	(-,=, -, -, -, -)			
7626(4)	2658(4)	0.027(5)	-0.6(4)	(11/2, 13/2)	<75 ^b	-	-

^aCorrected for feeding from an observed transition.

^bLimit reported to a 90% confidence level.

^cPrevious result from Ref. [8].

^d[26].

°[27]. ^f[28].

29

Backup – ²⁸Mg data table

This work						Ref. [19]	
Level energy (keV)	Gamma rays (keV)	$I_{\gamma,\mathrm{rel}}$	I^{π}	$\tau_{\rm mean}~({\rm fs})$	I_{eval}^{π}	$\tau_{\text{mean,eval}}$ (fs)	
1473.63(9)	1473.59(9)	1.000(15)		$> 1.5 \times 10^3$ a	2^{+}	$1.73(14) \times 10^{3}$	
4021.4(3)	2547.6(3)	0.65(2)	4+	$1.8(3) \times 10^2$	4+	$1.5(5) \times 10^{2}$	
4556.3(12)	3082.5(12)	0.119(16)		<42 ^a	2^{+}	<43	
4879(2)	3405(2)	0.023(7)		<26 ^a	2^{+}	$< 1.2 \times 10^2$	
5172.9(7)	3698(3), 1151.5(6)	0.08(2), 0.031(10)		$2.6^{+1.6}_{-1.3} \times 10^2$	3-	$1.6(13) \times 10^2$	
5184.3(5)	1163.1(4)	0.120(9)	(4+)	21^{+15}_{-14}			
5475(3)	4001(3)	0.018(8)		${<}5.0 imes10^2$ a	2		
5672(3)	4198(3)	0.048(10)		$1.1(4) \times 10^{2}$	2^{+}		
6139.0(12)	4664.9(12)	0.032(9)	$(0, 4)^{-}$	$> 1.0 \times 10^3$ a,			
				$<\!2.5 imes 10^{5}$ b			
6528.2(9)	1356.3(12), 2506.7(8)	0.021(5), 0.115(12)	$(4, 5)^{-}$	$1.9(6) \times 10^{2}$			
7203(3)	3181(3), 5723(5)	0.033(10), 0.009(4)	$(2^+, 3, 4^+)$	${<}3.8 imes10^2$ $^{\mathrm{a}}$			
7747(2)	3726(2)	0.033(8)	(5)	<85 ^a			
7929.3(12)	3907.6(12)	0.060(11)	(6+)	<42 ^a			
8438(5)	4416(5)	0.024(10)	(5,6)	$< 1.5 \times 10^3 $ b	(6+)		

^aLimit reported to a 90% confidence level.

^bLimit estimated based on lineshape (see text).